NLP Transformers:增强文本总结和语言理解能力

Yunus Emre Isikdemir
{"title":"NLP Transformers:增强文本总结和语言理解能力","authors":"Yunus Emre Isikdemir","doi":"10.31796/ogummf.1303569","DOIUrl":null,"url":null,"abstract":"As the amount of the available information continues to grow, finding the relevant information has become increasingly challenging. As a solution, text summarization has emerged as a vital method for extracting essential information from lengthy documents. There are various techniques available for filtering documents and extracting the pertinent information. In this study, a comparative analysis is conducted to evaluate traditional approaches and state-of-the-art methods on the BBC News and CNN/DailyMail datasets. This study offers valuable insights for researchers to advance their research and helps practitioners in selecting the most suitable techniques for their specific use cases.","PeriodicalId":502977,"journal":{"name":"Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi","volume":"44 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NLP Transformers: Enhanced Text Summarization and Language Understanding\",\"authors\":\"Yunus Emre Isikdemir\",\"doi\":\"10.31796/ogummf.1303569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of the available information continues to grow, finding the relevant information has become increasingly challenging. As a solution, text summarization has emerged as a vital method for extracting essential information from lengthy documents. There are various techniques available for filtering documents and extracting the pertinent information. In this study, a comparative analysis is conducted to evaluate traditional approaches and state-of-the-art methods on the BBC News and CNN/DailyMail datasets. This study offers valuable insights for researchers to advance their research and helps practitioners in selecting the most suitable techniques for their specific use cases.\",\"PeriodicalId\":502977,\"journal\":{\"name\":\"Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31796/ogummf.1303569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31796/ogummf.1303569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着可用信息量的不断增长,查找相关信息变得越来越具有挑战性。作为一种解决方案,文本摘要已成为从冗长文档中提取重要信息的重要方法。目前有多种技术可用于过滤文档和提取相关信息。本研究在 BBC News 和 CNN/DailyMail 数据集上进行了比较分析,以评估传统方法和最新方法。这项研究为研究人员提供了宝贵的见解,有助于他们推进研究,并帮助从业人员选择最适合其特定用例的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NLP Transformers: Enhanced Text Summarization and Language Understanding
As the amount of the available information continues to grow, finding the relevant information has become increasingly challenging. As a solution, text summarization has emerged as a vital method for extracting essential information from lengthy documents. There are various techniques available for filtering documents and extracting the pertinent information. In this study, a comparative analysis is conducted to evaluate traditional approaches and state-of-the-art methods on the BBC News and CNN/DailyMail datasets. This study offers valuable insights for researchers to advance their research and helps practitioners in selecting the most suitable techniques for their specific use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信