{"title":"在埃塞俄比亚亚的斯亚贝巴用蜡筛制造纸质装置,用于测定特定焊接烟尘微粒中的铁含量","authors":"Gizachew Wendimu, Ahmed Hussen, R. Mohan B.","doi":"10.4314/bcse.v38i3.2","DOIUrl":null,"url":null,"abstract":"In this study a paper-based analytical device was developed using screen printing technique for the determination of particulate iron from welding fumes. The operational parameters such as volume and concentration of 1,10-phenanthroline, volume and concentration of hydroxylamine were optimized by the Box Behnken Design (BBD) using Minitab. Additionally, the µ-PAD's sample solution holding capacity and reaction time were also optimized. Under the optimized condition, particulate metal concentrations were colorimetrically quantified usinga handheld mobile phone and image processing software, ImageJ. Very good analytical performance such as good linearity of the calibration curve and better selectivity was observed by the developed method. The limit of detection for Fe3+ assay was 4.6 mg/L; which is adequate to determine the threshold concentration limit of particulate iron set by the regulatory bodies (6 mg/L). The µ-PAD revealed 95-99% recovery compared with the UV-Vis spectrophotometry (98-100%). Furthermore, welding fume samples were collected in Addis Ababa over five days, using mixed cellulose ester filters and the findings show a high concentration that exceeds the standard levels. Analyzing particulate iron with µ-PADs yielded results consistent with UV-Vis spectrophotometry, suggesting µ-PADs' potential application for occupational particulate iron exposure measurement, eliminating the need for expensive analytical devices. \nKEY WORDS: µ-PADs, Particulate iron, Response surface methodology, Wax screen-printing, Welding fume, Colorimetric detection \nBull. Chem. Soc. Ethiop. 2024, 38(3), 563-576. \nDOI: https://dx.doi.org/10.4314/bcse.v38i3.2 \n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wax screen-based fabrication of paper devices for the determination of iron in particulates of selected welding fumes in Addis Ababa, Ethiopia\",\"authors\":\"Gizachew Wendimu, Ahmed Hussen, R. Mohan B.\",\"doi\":\"10.4314/bcse.v38i3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study a paper-based analytical device was developed using screen printing technique for the determination of particulate iron from welding fumes. The operational parameters such as volume and concentration of 1,10-phenanthroline, volume and concentration of hydroxylamine were optimized by the Box Behnken Design (BBD) using Minitab. Additionally, the µ-PAD's sample solution holding capacity and reaction time were also optimized. Under the optimized condition, particulate metal concentrations were colorimetrically quantified usinga handheld mobile phone and image processing software, ImageJ. Very good analytical performance such as good linearity of the calibration curve and better selectivity was observed by the developed method. The limit of detection for Fe3+ assay was 4.6 mg/L; which is adequate to determine the threshold concentration limit of particulate iron set by the regulatory bodies (6 mg/L). The µ-PAD revealed 95-99% recovery compared with the UV-Vis spectrophotometry (98-100%). Furthermore, welding fume samples were collected in Addis Ababa over five days, using mixed cellulose ester filters and the findings show a high concentration that exceeds the standard levels. Analyzing particulate iron with µ-PADs yielded results consistent with UV-Vis spectrophotometry, suggesting µ-PADs' potential application for occupational particulate iron exposure measurement, eliminating the need for expensive analytical devices. \\nKEY WORDS: µ-PADs, Particulate iron, Response surface methodology, Wax screen-printing, Welding fume, Colorimetric detection \\nBull. Chem. Soc. Ethiop. 2024, 38(3), 563-576. \\nDOI: https://dx.doi.org/10.4314/bcse.v38i3.2 \\n \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.4314/bcse.v38i3.2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i3.2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wax screen-based fabrication of paper devices for the determination of iron in particulates of selected welding fumes in Addis Ababa, Ethiopia
In this study a paper-based analytical device was developed using screen printing technique for the determination of particulate iron from welding fumes. The operational parameters such as volume and concentration of 1,10-phenanthroline, volume and concentration of hydroxylamine were optimized by the Box Behnken Design (BBD) using Minitab. Additionally, the µ-PAD's sample solution holding capacity and reaction time were also optimized. Under the optimized condition, particulate metal concentrations were colorimetrically quantified usinga handheld mobile phone and image processing software, ImageJ. Very good analytical performance such as good linearity of the calibration curve and better selectivity was observed by the developed method. The limit of detection for Fe3+ assay was 4.6 mg/L; which is adequate to determine the threshold concentration limit of particulate iron set by the regulatory bodies (6 mg/L). The µ-PAD revealed 95-99% recovery compared with the UV-Vis spectrophotometry (98-100%). Furthermore, welding fume samples were collected in Addis Ababa over five days, using mixed cellulose ester filters and the findings show a high concentration that exceeds the standard levels. Analyzing particulate iron with µ-PADs yielded results consistent with UV-Vis spectrophotometry, suggesting µ-PADs' potential application for occupational particulate iron exposure measurement, eliminating the need for expensive analytical devices.
KEY WORDS: µ-PADs, Particulate iron, Response surface methodology, Wax screen-printing, Welding fume, Colorimetric detection
Bull. Chem. Soc. Ethiop. 2024, 38(3), 563-576.
DOI: https://dx.doi.org/10.4314/bcse.v38i3.2
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.