{"title":"日本平户、秋吉台和阿苏的露天草地焚烧产生的无机物颗粒排放物","authors":"Satoshi Irei, Seiichiro Yonemura, Satoshi Kameyama, Asahi Sakuma, Hiroto Shimazaki","doi":"10.3390/air2010004","DOIUrl":null,"url":null,"abstract":"Biomass burning is one of the largest sources of particulate matter emissions globally. However, the emission of particulate inorganic species from prescribed grassland burning in Japan has not yet been characterized. In this study, we collected total suspended particulate matter from prescribed grassland burning in Hirado, Akiyoshidai, and Aso, Japan. The collected filter samples were brought to the laboratory, and water-soluble inorganic components were analyzed via ion chromatography. The measurement results showed high excess concentrations of potassium, calcium, and magnesium, and these substances were highly correlated, which agreed with previously reported findings. In contrast, the concentrations of sodium, chloride, nitrate, and sulfate were insignificant, even though their high concentrations were reported in other biomass burning studies. Among these low concentration substances, a high correlation was still observed between sulfate and nitrate. It is possible that the low concentrations of those species could have been biased in the measurements, particularly as a result of subtracting blank and background values from the observed concentrations. Building up more data in this area may allow us to characterize the significance of domestic biomass burning’s contribution to inorganic particulate components in Japanese air, which may consequently contributes to better understanding of adverse health effect of airborne particulate matter.","PeriodicalId":517268,"journal":{"name":"Air","volume":"2011 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emission of Particulate Inorganic Substances from Prescribed Open Grassland Burning in Hirado, Akiyoshidai, and Aso, Japan\",\"authors\":\"Satoshi Irei, Seiichiro Yonemura, Satoshi Kameyama, Asahi Sakuma, Hiroto Shimazaki\",\"doi\":\"10.3390/air2010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomass burning is one of the largest sources of particulate matter emissions globally. However, the emission of particulate inorganic species from prescribed grassland burning in Japan has not yet been characterized. In this study, we collected total suspended particulate matter from prescribed grassland burning in Hirado, Akiyoshidai, and Aso, Japan. The collected filter samples were brought to the laboratory, and water-soluble inorganic components were analyzed via ion chromatography. The measurement results showed high excess concentrations of potassium, calcium, and magnesium, and these substances were highly correlated, which agreed with previously reported findings. In contrast, the concentrations of sodium, chloride, nitrate, and sulfate were insignificant, even though their high concentrations were reported in other biomass burning studies. Among these low concentration substances, a high correlation was still observed between sulfate and nitrate. It is possible that the low concentrations of those species could have been biased in the measurements, particularly as a result of subtracting blank and background values from the observed concentrations. Building up more data in this area may allow us to characterize the significance of domestic biomass burning’s contribution to inorganic particulate components in Japanese air, which may consequently contributes to better understanding of adverse health effect of airborne particulate matter.\",\"PeriodicalId\":517268,\"journal\":{\"name\":\"Air\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/air2010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/air2010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emission of Particulate Inorganic Substances from Prescribed Open Grassland Burning in Hirado, Akiyoshidai, and Aso, Japan
Biomass burning is one of the largest sources of particulate matter emissions globally. However, the emission of particulate inorganic species from prescribed grassland burning in Japan has not yet been characterized. In this study, we collected total suspended particulate matter from prescribed grassland burning in Hirado, Akiyoshidai, and Aso, Japan. The collected filter samples were brought to the laboratory, and water-soluble inorganic components were analyzed via ion chromatography. The measurement results showed high excess concentrations of potassium, calcium, and magnesium, and these substances were highly correlated, which agreed with previously reported findings. In contrast, the concentrations of sodium, chloride, nitrate, and sulfate were insignificant, even though their high concentrations were reported in other biomass burning studies. Among these low concentration substances, a high correlation was still observed between sulfate and nitrate. It is possible that the low concentrations of those species could have been biased in the measurements, particularly as a result of subtracting blank and background values from the observed concentrations. Building up more data in this area may allow us to characterize the significance of domestic biomass burning’s contribution to inorganic particulate components in Japanese air, which may consequently contributes to better understanding of adverse health effect of airborne particulate matter.