Kelley Moyers, J. Abatzoglou, A. Escriva-Bou, J. Medellín-Azuara, J. Viers
{"title":"无形的水附加费:气候变暖增加了圣华金河谷依赖地下水灌溉农业的作物需水量","authors":"Kelley Moyers, J. Abatzoglou, A. Escriva-Bou, J. Medellín-Azuara, J. Viers","doi":"10.1371/journal.pwat.0000184","DOIUrl":null,"url":null,"abstract":"California’s bountiful San Joaquin Valley (SJV), a critical region for global fruit and nut production, has withstood two severe, multi-year droughts in the past decade, exacerbated by record-breaking high temperature and evaporative demand. We employed climate data and crop coefficients to estimate the crop water demand in the SJV over the past forty years. Our approach, using crop coefficients for Penman-Montieth modeled evapotranspiration, focused on the climate effects on crop water demand, avoiding the confounding factors of changing land use and management practices that are present in actual evapotranspiration. We demonstrate that increases in crop water demand explain half of the cumulative deficits of the agricultural water balance since 1980, exacerbating water reliance on depleting groundwater supplies and fluctuating surface water imports. We call this phenomenon of climate-induced increased crop water demand an invisible water surcharge. We found that in the past decade, this invisible water surcharge on agriculture has increased the crop water demand in the SJV by 4.4% with respect to the 1980–2011 timeframe—more than 800 GL per year, a volume as large as a major reservoir in the SJV. Despite potential agronomic adaptation and crop response to climate warming, increased crop water demand adds a stressor to the sustainability of the global fruit and nut supply and calls for changes in management and policies to consider the shifting hydroclimate.","PeriodicalId":93672,"journal":{"name":"PLOS water","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An invisible water surcharge: Climate warming increases crop water demand in the San Joaquin Valley’s groundwater-dependent irrigated agriculture\",\"authors\":\"Kelley Moyers, J. Abatzoglou, A. Escriva-Bou, J. Medellín-Azuara, J. Viers\",\"doi\":\"10.1371/journal.pwat.0000184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"California’s bountiful San Joaquin Valley (SJV), a critical region for global fruit and nut production, has withstood two severe, multi-year droughts in the past decade, exacerbated by record-breaking high temperature and evaporative demand. We employed climate data and crop coefficients to estimate the crop water demand in the SJV over the past forty years. Our approach, using crop coefficients for Penman-Montieth modeled evapotranspiration, focused on the climate effects on crop water demand, avoiding the confounding factors of changing land use and management practices that are present in actual evapotranspiration. We demonstrate that increases in crop water demand explain half of the cumulative deficits of the agricultural water balance since 1980, exacerbating water reliance on depleting groundwater supplies and fluctuating surface water imports. We call this phenomenon of climate-induced increased crop water demand an invisible water surcharge. We found that in the past decade, this invisible water surcharge on agriculture has increased the crop water demand in the SJV by 4.4% with respect to the 1980–2011 timeframe—more than 800 GL per year, a volume as large as a major reservoir in the SJV. Despite potential agronomic adaptation and crop response to climate warming, increased crop water demand adds a stressor to the sustainability of the global fruit and nut supply and calls for changes in management and policies to consider the shifting hydroclimate.\",\"PeriodicalId\":93672,\"journal\":{\"name\":\"PLOS water\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pwat.0000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pwat.0000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An invisible water surcharge: Climate warming increases crop water demand in the San Joaquin Valley’s groundwater-dependent irrigated agriculture
California’s bountiful San Joaquin Valley (SJV), a critical region for global fruit and nut production, has withstood two severe, multi-year droughts in the past decade, exacerbated by record-breaking high temperature and evaporative demand. We employed climate data and crop coefficients to estimate the crop water demand in the SJV over the past forty years. Our approach, using crop coefficients for Penman-Montieth modeled evapotranspiration, focused on the climate effects on crop water demand, avoiding the confounding factors of changing land use and management practices that are present in actual evapotranspiration. We demonstrate that increases in crop water demand explain half of the cumulative deficits of the agricultural water balance since 1980, exacerbating water reliance on depleting groundwater supplies and fluctuating surface water imports. We call this phenomenon of climate-induced increased crop water demand an invisible water surcharge. We found that in the past decade, this invisible water surcharge on agriculture has increased the crop water demand in the SJV by 4.4% with respect to the 1980–2011 timeframe—more than 800 GL per year, a volume as large as a major reservoir in the SJV. Despite potential agronomic adaptation and crop response to climate warming, increased crop water demand adds a stressor to the sustainability of the global fruit and nut supply and calls for changes in management and policies to consider the shifting hydroclimate.