基于可持续碳水化合物核心的高性能聚酰胺

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Lorenz P. Manker, Maxime A. Hedou, Clement Broggi, Marie J. Jones, Kristoffer Kortsen, Kalaiyarasi Puvanenthiran, Yildiz Kupper, Holger Frauenrath, François Marechal, Veronique Michaud, Roger Marti, Michael P. Shaver, Jeremy S. Luterbacher
{"title":"基于可持续碳水化合物核心的高性能聚酰胺","authors":"Lorenz P. Manker, Maxime A. Hedou, Clement Broggi, Marie J. Jones, Kristoffer Kortsen, Kalaiyarasi Puvanenthiran, Yildiz Kupper, Holger Frauenrath, François Marechal, Veronique Michaud, Roger Marti, Michael P. Shaver, Jeremy S. Luterbacher","doi":"10.1038/s41893-024-01298-7","DOIUrl":null,"url":null,"abstract":"Sustainably producing plastics with performance properties across a variety of materials chemistries is a major challenge—especially considering that most performance materials use aromatic precursors that are still difficult to source sustainably. Here we demonstrate catalyst-free, melt polymerization of dimethyl glyoxylate xylose, a stabilized carbohydrate that can be synthesized from agricultural waste with 97% atom efficiency, into amorphous polyamides with performances comparable to fossil-based semi-aromatic alternatives. Despite the presence of a carbohydrate core, these materials retain their thermomechanical properties through multiple rounds of high-shear mechanical recycling and could be chemically recycled. Techno-economic and life-cycle analyses suggest selling prices close to those of nylon 66 with a reduction of global warming potential of up to 75%. This work illustrates the versatility of a carbohydrate moiety to impart performance that can compete with that of semi-aromatic polymers across two important materials chemistries. With a sustainable carbohydrate core, the proposed polyamide plastic design here can compete with fossil-based alternative in terms of both performance and cost.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 5","pages":"640-651"},"PeriodicalIF":25.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01298-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance polyamides built on a sustainable carbohydrate core\",\"authors\":\"Lorenz P. Manker, Maxime A. Hedou, Clement Broggi, Marie J. Jones, Kristoffer Kortsen, Kalaiyarasi Puvanenthiran, Yildiz Kupper, Holger Frauenrath, François Marechal, Veronique Michaud, Roger Marti, Michael P. Shaver, Jeremy S. Luterbacher\",\"doi\":\"10.1038/s41893-024-01298-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainably producing plastics with performance properties across a variety of materials chemistries is a major challenge—especially considering that most performance materials use aromatic precursors that are still difficult to source sustainably. Here we demonstrate catalyst-free, melt polymerization of dimethyl glyoxylate xylose, a stabilized carbohydrate that can be synthesized from agricultural waste with 97% atom efficiency, into amorphous polyamides with performances comparable to fossil-based semi-aromatic alternatives. Despite the presence of a carbohydrate core, these materials retain their thermomechanical properties through multiple rounds of high-shear mechanical recycling and could be chemically recycled. Techno-economic and life-cycle analyses suggest selling prices close to those of nylon 66 with a reduction of global warming potential of up to 75%. This work illustrates the versatility of a carbohydrate moiety to impart performance that can compete with that of semi-aromatic polymers across two important materials chemistries. With a sustainable carbohydrate core, the proposed polyamide plastic design here can compete with fossil-based alternative in terms of both performance and cost.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 5\",\"pages\":\"640-651\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41893-024-01298-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01298-7\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01298-7","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

可持续地生产具有各种材料化学性能的塑料是一项重大挑战,特别是考虑到大多数高性能材料都使用芳香族前体,而芳香族前体仍然难以可持续地获得。在这里,我们展示了木糖二甲基乙醛酸酯的无催化剂熔融聚合,这种稳定的碳水化合物可从农业废弃物中合成,原子效率高达 97%,可制成无定形聚酰胺,其性能可与化石基半芳香族替代品媲美。尽管存在碳水化合物核心,但这些材料在经过多轮高剪切机械循环后仍能保持其热力学特性,并可进行化学循环。技术经济和生命周期分析表明,其销售价格接近尼龙 66,全球变暖潜能值可降低 75%。这项研究表明,碳水化合物分子具有多功能性,在两种重要的材料化学性质中,其性能可与半芳香族聚合物相媲美。有了可持续的碳水化合物核心,本文提出的聚酰胺塑料设计在性能和成本方面都可以与化石基替代品相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance polyamides built on a sustainable carbohydrate core

Performance polyamides built on a sustainable carbohydrate core
Sustainably producing plastics with performance properties across a variety of materials chemistries is a major challenge—especially considering that most performance materials use aromatic precursors that are still difficult to source sustainably. Here we demonstrate catalyst-free, melt polymerization of dimethyl glyoxylate xylose, a stabilized carbohydrate that can be synthesized from agricultural waste with 97% atom efficiency, into amorphous polyamides with performances comparable to fossil-based semi-aromatic alternatives. Despite the presence of a carbohydrate core, these materials retain their thermomechanical properties through multiple rounds of high-shear mechanical recycling and could be chemically recycled. Techno-economic and life-cycle analyses suggest selling prices close to those of nylon 66 with a reduction of global warming potential of up to 75%. This work illustrates the versatility of a carbohydrate moiety to impart performance that can compete with that of semi-aromatic polymers across two important materials chemistries. With a sustainable carbohydrate core, the proposed polyamide plastic design here can compete with fossil-based alternative in terms of both performance and cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信