Nicola Zani, A. Mazzù, Luigi Solazzi, C. Petrogalli
{"title":"研究铁路车轮钢的磨损机制:实验启示与预测绘图","authors":"Nicola Zani, A. Mazzù, Luigi Solazzi, C. Petrogalli","doi":"10.3390/lubricants12030093","DOIUrl":null,"url":null,"abstract":"Railway systems play a pivotal role in modern transportation networks, contributing to both efficiency and environmental sustainability. This study investigated the multifaceted aspects of wear phenomena in railway engineering, focusing on their significant implications for environmental costs and operational efficiency. Experimental trials were conducted using a high-performance bi-disc apparatus, evaluating a range of materials, contact pressures, and lubrication conditions. Shakedown maps were employed to assess ratcheting behaviour, while the wear rate was analysed as a function of the fatigue index (FI). The results reveal the intricate interplay of contact pressure, slip ratio, material properties, and lubrication in determining wear and ratcheting behaviour. Oxidative and mild wear mechanisms were identified, and wear debris composition and morphology were characterised. The outcomes from this research clarify the pivotal role that wear processes play within railway systems and the far-reaching environmental repercussions they entail. This exploration contributes to the ongoing optimisation of railway operations, offering valuable insights aimed at mitigating unavoidable pollution sources and strengthening sustainability efforts. By delving into the intricate dynamics of wear phenomena within wheel–rail material, this research paves the way for innovative solutions that not only enhance operational efficiency but also minimise the ecological footprint of railway transportation.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Wear Mechanisms in Railway Wheel Steels: Experimental Insights and Predictive Mapping\",\"authors\":\"Nicola Zani, A. Mazzù, Luigi Solazzi, C. Petrogalli\",\"doi\":\"10.3390/lubricants12030093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Railway systems play a pivotal role in modern transportation networks, contributing to both efficiency and environmental sustainability. This study investigated the multifaceted aspects of wear phenomena in railway engineering, focusing on their significant implications for environmental costs and operational efficiency. Experimental trials were conducted using a high-performance bi-disc apparatus, evaluating a range of materials, contact pressures, and lubrication conditions. Shakedown maps were employed to assess ratcheting behaviour, while the wear rate was analysed as a function of the fatigue index (FI). The results reveal the intricate interplay of contact pressure, slip ratio, material properties, and lubrication in determining wear and ratcheting behaviour. Oxidative and mild wear mechanisms were identified, and wear debris composition and morphology were characterised. The outcomes from this research clarify the pivotal role that wear processes play within railway systems and the far-reaching environmental repercussions they entail. This exploration contributes to the ongoing optimisation of railway operations, offering valuable insights aimed at mitigating unavoidable pollution sources and strengthening sustainability efforts. By delving into the intricate dynamics of wear phenomena within wheel–rail material, this research paves the way for innovative solutions that not only enhance operational efficiency but also minimise the ecological footprint of railway transportation.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030093\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Examining Wear Mechanisms in Railway Wheel Steels: Experimental Insights and Predictive Mapping
Railway systems play a pivotal role in modern transportation networks, contributing to both efficiency and environmental sustainability. This study investigated the multifaceted aspects of wear phenomena in railway engineering, focusing on their significant implications for environmental costs and operational efficiency. Experimental trials were conducted using a high-performance bi-disc apparatus, evaluating a range of materials, contact pressures, and lubrication conditions. Shakedown maps were employed to assess ratcheting behaviour, while the wear rate was analysed as a function of the fatigue index (FI). The results reveal the intricate interplay of contact pressure, slip ratio, material properties, and lubrication in determining wear and ratcheting behaviour. Oxidative and mild wear mechanisms were identified, and wear debris composition and morphology were characterised. The outcomes from this research clarify the pivotal role that wear processes play within railway systems and the far-reaching environmental repercussions they entail. This exploration contributes to the ongoing optimisation of railway operations, offering valuable insights aimed at mitigating unavoidable pollution sources and strengthening sustainability efforts. By delving into the intricate dynamics of wear phenomena within wheel–rail material, this research paves the way for innovative solutions that not only enhance operational efficiency but also minimise the ecological footprint of railway transportation.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding