{"title":"用邻域布赖尔分歧技能得分评估二元事件的概率预测","authors":"Joël Stein, Fabien Stoop","doi":"10.1175/mwr-d-22-0235.1","DOIUrl":null,"url":null,"abstract":"\nA procedure for evaluating the quality of probabilistic forecasts of binary events has been developed. This is based on a two-step procedure: pooling of forecasts on the one hand and observations on the other, on all the points of a neighborhood in order to obtain frequencies at the neighborhood length scale and then to calculate the Brier divergence for these neighborhood frequencies. This score allows the comparison of a probabilistic forecast and observations at the neighborhood length scale and therefore the rewarding of event forecasts shifted from the location of the observed event by a distance smaller than the neighborhood size. A new decomposition of this score generalizes that of the Brier score and allows the separation of the generalized resolution, reliability and uncertainty terms. The Neighborhood Brier Divergence Skill Score BDnSS measures the performance of the probabilistic forecast against the sample climatology. BDnSS and its decomposition have been used for idealized and real cases in order to show the utility of neighborhoods when comparing at different scales the performances of ensemble forecasts between themselves or with deterministic forecasts or of deterministic forecasts between themselves.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1part1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of probabilistic forecasts of binary events with the Neighborhood Brier Divergence Skill Score\",\"authors\":\"Joël Stein, Fabien Stoop\",\"doi\":\"10.1175/mwr-d-22-0235.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nA procedure for evaluating the quality of probabilistic forecasts of binary events has been developed. This is based on a two-step procedure: pooling of forecasts on the one hand and observations on the other, on all the points of a neighborhood in order to obtain frequencies at the neighborhood length scale and then to calculate the Brier divergence for these neighborhood frequencies. This score allows the comparison of a probabilistic forecast and observations at the neighborhood length scale and therefore the rewarding of event forecasts shifted from the location of the observed event by a distance smaller than the neighborhood size. A new decomposition of this score generalizes that of the Brier score and allows the separation of the generalized resolution, reliability and uncertainty terms. The Neighborhood Brier Divergence Skill Score BDnSS measures the performance of the probabilistic forecast against the sample climatology. BDnSS and its decomposition have been used for idealized and real cases in order to show the utility of neighborhoods when comparing at different scales the performances of ensemble forecasts between themselves or with deterministic forecasts or of deterministic forecasts between themselves.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 1part1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-22-0235.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-22-0235.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evaluation of probabilistic forecasts of binary events with the Neighborhood Brier Divergence Skill Score
A procedure for evaluating the quality of probabilistic forecasts of binary events has been developed. This is based on a two-step procedure: pooling of forecasts on the one hand and observations on the other, on all the points of a neighborhood in order to obtain frequencies at the neighborhood length scale and then to calculate the Brier divergence for these neighborhood frequencies. This score allows the comparison of a probabilistic forecast and observations at the neighborhood length scale and therefore the rewarding of event forecasts shifted from the location of the observed event by a distance smaller than the neighborhood size. A new decomposition of this score generalizes that of the Brier score and allows the separation of the generalized resolution, reliability and uncertainty terms. The Neighborhood Brier Divergence Skill Score BDnSS measures the performance of the probabilistic forecast against the sample climatology. BDnSS and its decomposition have been used for idealized and real cases in order to show the utility of neighborhoods when comparing at different scales the performances of ensemble forecasts between themselves or with deterministic forecasts or of deterministic forecasts between themselves.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.