利用 HWMA 控制图高效监测自回归和移动平均过程

Y. Areepong, S. Sukparungsee, Tanapat Anusas-Amornkul
{"title":"利用 HWMA 控制图高效监测自回归和移动平均过程","authors":"Y. Areepong, S. Sukparungsee, Tanapat Anusas-Amornkul","doi":"10.37394/23202.2024.23.15","DOIUrl":null,"url":null,"abstract":"Quality control is an essential process for manufacturing and industry because it enhances product quality, consumer satisfaction, and overall profitability. Among many other statistical process control tools, quality practitioners typically employ control charts to monitor the industrial process and detect production changes. Control charts are widely used to detect flaws in many applications, such as distributed circuits and systems, electronic devices, and systems and signals. In this study, we derived an explicit formula for Average Run Length (ARL) of the Homogenously Weighted Moving Average control chart (HWMA) under the ARMA (p,q) process. The accuracy was checked using the numerical integral equation (NIE) technique. The finding showed that the explicit formulas and numerical solutions presented an outstanding level of agreement. However, the computational time for the explicit formulas was approximately one second, which was less than that required for the NIE. Moreover, the performance efficiency of the HWMA control chart is compared with the cumulative sum control chart for ARMA (p, q) processes including ARMA (2,1), ARMA (2,3), and ARMA (1,1) processes. The results found that the HWMA control chart performance is found to be preferable to the CUSUM control chart performance. Additionally, the explicit formula of the HWMA control chart was implemented in a practical application of the count of nonconformities in printed circuit boards (PCBs).","PeriodicalId":516312,"journal":{"name":"WSEAS TRANSACTIONS ON SYSTEMS","volume":"23 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Monitoring of Autoregressive and Moving Average Process using HWMA Control Chart\",\"authors\":\"Y. Areepong, S. Sukparungsee, Tanapat Anusas-Amornkul\",\"doi\":\"10.37394/23202.2024.23.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality control is an essential process for manufacturing and industry because it enhances product quality, consumer satisfaction, and overall profitability. Among many other statistical process control tools, quality practitioners typically employ control charts to monitor the industrial process and detect production changes. Control charts are widely used to detect flaws in many applications, such as distributed circuits and systems, electronic devices, and systems and signals. In this study, we derived an explicit formula for Average Run Length (ARL) of the Homogenously Weighted Moving Average control chart (HWMA) under the ARMA (p,q) process. The accuracy was checked using the numerical integral equation (NIE) technique. The finding showed that the explicit formulas and numerical solutions presented an outstanding level of agreement. However, the computational time for the explicit formulas was approximately one second, which was less than that required for the NIE. Moreover, the performance efficiency of the HWMA control chart is compared with the cumulative sum control chart for ARMA (p, q) processes including ARMA (2,1), ARMA (2,3), and ARMA (1,1) processes. The results found that the HWMA control chart performance is found to be preferable to the CUSUM control chart performance. Additionally, the explicit formula of the HWMA control chart was implemented in a practical application of the count of nonconformities in printed circuit boards (PCBs).\",\"PeriodicalId\":516312,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SYSTEMS\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SYSTEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23202.2024.23.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23202.2024.23.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质量控制是制造业和工业的重要流程,因为它能提高产品质量、消费者满意度和整体盈利能力。在许多其他统计过程控制工具中,质量工作者通常使用控制图来监控工业过程和检测生产变化。控制图被广泛用于检测许多应用中的缺陷,如分布式电路和系统、电子设备以及系统和信号。在本研究中,我们推导出了 ARMA(p,q)过程下均质加权移动平均控制图(HWMA)的平均运行长度(ARL)的明确公式。使用数值积分方程(NIE)技术检验了其准确性。研究结果表明,显式公式和数值解的一致性非常好。然而,显式公式的计算时间约为一秒,少于数值积分方程所需的时间。此外,还比较了 HWMA 控制图与 ARMA (p, q) 过程(包括 ARMA (2,1)、ARMA (2,3) 和 ARMA (1,1))累积和控制图的性能效率。结果发现,HWMA 控制图的性能优于 CUSUM 控制图。此外,HWMA 控制图的显式公式在印刷电路板(PCB)不合格计数的实际应用中得到了实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Monitoring of Autoregressive and Moving Average Process using HWMA Control Chart
Quality control is an essential process for manufacturing and industry because it enhances product quality, consumer satisfaction, and overall profitability. Among many other statistical process control tools, quality practitioners typically employ control charts to monitor the industrial process and detect production changes. Control charts are widely used to detect flaws in many applications, such as distributed circuits and systems, electronic devices, and systems and signals. In this study, we derived an explicit formula for Average Run Length (ARL) of the Homogenously Weighted Moving Average control chart (HWMA) under the ARMA (p,q) process. The accuracy was checked using the numerical integral equation (NIE) technique. The finding showed that the explicit formulas and numerical solutions presented an outstanding level of agreement. However, the computational time for the explicit formulas was approximately one second, which was less than that required for the NIE. Moreover, the performance efficiency of the HWMA control chart is compared with the cumulative sum control chart for ARMA (p, q) processes including ARMA (2,1), ARMA (2,3), and ARMA (1,1) processes. The results found that the HWMA control chart performance is found to be preferable to the CUSUM control chart performance. Additionally, the explicit formula of the HWMA control chart was implemented in a practical application of the count of nonconformities in printed circuit boards (PCBs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信