小噪声极限下的信息-反应不等式

Andrea Auconi
{"title":"小噪声极限下的信息-反应不等式","authors":"Andrea Auconi","doi":"10.1209/0295-5075/ad33e6","DOIUrl":null,"url":null,"abstract":"\n The invariant response was defined from a formulation of the fluctuation-response theorem in the space of probability distributions. An inequality which sets the mutual information as a limiting factor to the invariant response is here derived in the small noise limit based on Stam’s isoperimetric inequality. Beyond the small noise limit, numerical violations exclude its general validity, however a strong distribution bias is observed. Applications to the thermodynamics of feedback control and to estimation theory are discussed.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information-response inequality in the small noise limit\",\"authors\":\"Andrea Auconi\",\"doi\":\"10.1209/0295-5075/ad33e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The invariant response was defined from a formulation of the fluctuation-response theorem in the space of probability distributions. An inequality which sets the mutual information as a limiting factor to the invariant response is here derived in the small noise limit based on Stam’s isoperimetric inequality. Beyond the small noise limit, numerical violations exclude its general validity, however a strong distribution bias is observed. Applications to the thermodynamics of feedback control and to estimation theory are discussed.\",\"PeriodicalId\":503117,\"journal\":{\"name\":\"Europhysics Letters\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europhysics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad33e6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad33e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不变响应的定义来自概率分布空间中波动响应定理的表述。在此,根据斯塔姆等周不等式,推导出在小噪声极限下将互信息作为不变响应限制因子的不等式。在小噪声极限之外,数值上的违规排除了它的普遍有效性,但观察到了强烈的分布偏差。讨论了反馈控制热力学和估计理论的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information-response inequality in the small noise limit
The invariant response was defined from a formulation of the fluctuation-response theorem in the space of probability distributions. An inequality which sets the mutual information as a limiting factor to the invariant response is here derived in the small noise limit based on Stam’s isoperimetric inequality. Beyond the small noise limit, numerical violations exclude its general validity, however a strong distribution bias is observed. Applications to the thermodynamics of feedback control and to estimation theory are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信