{"title":"结构化碳纤维增强纺织聚合物复合材料在喷砂过程中的侵蚀磨损","authors":"Tong Deng, Vivek Garg, Michael S.A. Bradley","doi":"10.3390/lubricants12030094","DOIUrl":null,"url":null,"abstract":"Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosive Wear of Structured Carbon-Fibre-Reinforced Textile Polymer Composites under Sands Blasting\",\"authors\":\"Tong Deng, Vivek Garg, Michael S.A. Bradley\",\"doi\":\"10.3390/lubricants12030094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030094\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Erosive Wear of Structured Carbon-Fibre-Reinforced Textile Polymer Composites under Sands Blasting
Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding