Michael F. Wehner, Margaret L. Duffy, M. Risser, C. J. Paciorek, Dáithí A. Stone, P. Pall
{"title":"关于极端日降水量长周期回归值的不确定性","authors":"Michael F. Wehner, Margaret L. Duffy, M. Risser, C. J. Paciorek, Dáithí A. Stone, P. Pall","doi":"10.3389/fclim.2024.1343072","DOIUrl":null,"url":null,"abstract":"Methods for calculating return values of extreme precipitation and their uncertainty are compared using daily precipitation rates over the Western U.S. and Southwestern Canada from a large ensemble of climate model simulations. The roles of return-value estimation procedures and sample size in uncertainty are evaluated for various return periods. We compare two different generalized extreme value (GEV) parameter estimation techniques, namely L-moments and maximum likelihood (MLE), as well as empirical techniques. Even for very large datasets, confidence intervals calculated using GEV techniques are narrower than those calculated using empirical methods. Furthermore, the more efficient L-moments parameter estimation techniques result in narrower confidence intervals than MLE parameter estimation techniques at small sample sizes, but similar best estimates. It should be noted that we do not claim that either parameter fitting technique is better calibrated than the other to estimate long period return values. While a non-stationary MLE methodology is readily available to estimate GEV parameters, it is not for the L-moments method. Comparison of uncertainty quantification methods are found to yield significantly different estimates for small sample sizes but converge to similar results as sample size increases. Finally, practical recommendations about the length and size of climate model ensemble simulations and the choice of statistical methods to robustly estimate long period return values of extreme daily precipitation statistics and quantify their uncertainty.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"22 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the uncertainty of long-period return values of extreme daily precipitation\",\"authors\":\"Michael F. Wehner, Margaret L. Duffy, M. Risser, C. J. Paciorek, Dáithí A. Stone, P. Pall\",\"doi\":\"10.3389/fclim.2024.1343072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods for calculating return values of extreme precipitation and their uncertainty are compared using daily precipitation rates over the Western U.S. and Southwestern Canada from a large ensemble of climate model simulations. The roles of return-value estimation procedures and sample size in uncertainty are evaluated for various return periods. We compare two different generalized extreme value (GEV) parameter estimation techniques, namely L-moments and maximum likelihood (MLE), as well as empirical techniques. Even for very large datasets, confidence intervals calculated using GEV techniques are narrower than those calculated using empirical methods. Furthermore, the more efficient L-moments parameter estimation techniques result in narrower confidence intervals than MLE parameter estimation techniques at small sample sizes, but similar best estimates. It should be noted that we do not claim that either parameter fitting technique is better calibrated than the other to estimate long period return values. While a non-stationary MLE methodology is readily available to estimate GEV parameters, it is not for the L-moments method. Comparison of uncertainty quantification methods are found to yield significantly different estimates for small sample sizes but converge to similar results as sample size increases. Finally, practical recommendations about the length and size of climate model ensemble simulations and the choice of statistical methods to robustly estimate long period return values of extreme daily precipitation statistics and quantify their uncertainty.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"22 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fclim.2024.1343072\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fclim.2024.1343072","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On the uncertainty of long-period return values of extreme daily precipitation
Methods for calculating return values of extreme precipitation and their uncertainty are compared using daily precipitation rates over the Western U.S. and Southwestern Canada from a large ensemble of climate model simulations. The roles of return-value estimation procedures and sample size in uncertainty are evaluated for various return periods. We compare two different generalized extreme value (GEV) parameter estimation techniques, namely L-moments and maximum likelihood (MLE), as well as empirical techniques. Even for very large datasets, confidence intervals calculated using GEV techniques are narrower than those calculated using empirical methods. Furthermore, the more efficient L-moments parameter estimation techniques result in narrower confidence intervals than MLE parameter estimation techniques at small sample sizes, but similar best estimates. It should be noted that we do not claim that either parameter fitting technique is better calibrated than the other to estimate long period return values. While a non-stationary MLE methodology is readily available to estimate GEV parameters, it is not for the L-moments method. Comparison of uncertainty quantification methods are found to yield significantly different estimates for small sample sizes but converge to similar results as sample size increases. Finally, practical recommendations about the length and size of climate model ensemble simulations and the choice of statistical methods to robustly estimate long period return values of extreme daily precipitation statistics and quantify their uncertainty.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico