情景、功能和信任:关于人工智能在医学中的可解释性的情景访谈研究结果

M. Marquardt, P. Graf, Eva Jansen, S. Hillmann, Jan-Niklas Voigt-Antons
{"title":"情景、功能和信任:关于人工智能在医学中的可解释性的情景访谈研究结果","authors":"M. Marquardt, P. Graf, Eva Jansen, S. Hillmann, Jan-Niklas Voigt-Antons","doi":"10.14512/tatup.33.1.41","DOIUrl":null,"url":null,"abstract":"A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we interviewed healthcare stakeholders about two scenarios: diagnostics and documentation. The scenarios vary the influence that an AI system has on decision-making through the interaction design and the amount of data processed. We present key evaluation factors for explainability at the interactional and procedural levels. Explainability must not interfere situationally in the doctor-patient conversation and question the professional role. At the same time, explainability functionally legitimizes an AI system as a second opinion and is central to building trust. A virtual embodiment of the AI system is advantageous for language-based explanations","PeriodicalId":504838,"journal":{"name":"TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis","volume":"125 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Situativität, Funktionalität und Vertrauen: Ergebnisse einer szenariobasierten Interviewstudie zur Erklärbarkeit von KI in der Medizin\",\"authors\":\"M. Marquardt, P. Graf, Eva Jansen, S. Hillmann, Jan-Niklas Voigt-Antons\",\"doi\":\"10.14512/tatup.33.1.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we interviewed healthcare stakeholders about two scenarios: diagnostics and documentation. The scenarios vary the influence that an AI system has on decision-making through the interaction design and the amount of data processed. We present key evaluation factors for explainability at the interactional and procedural levels. Explainability must not interfere situationally in the doctor-patient conversation and question the professional role. At the same time, explainability functionally legitimizes an AI system as a second opinion and is central to building trust. A virtual embodiment of the AI system is advantageous for language-based explanations\",\"PeriodicalId\":504838,\"journal\":{\"name\":\"TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis\",\"volume\":\"125 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14512/tatup.33.1.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14512/tatup.33.1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学中使用人工智能(AI)的一个核心要求是其可解释性,即提供有关其功能的面向对象的信息。这就引出了一个问题:如何在社会中设计出充分的可解释性?为了确定评估因素,我们就诊断和文档这两个场景采访了医疗保健领域的利益相关者。这两个场景中,人工智能系统通过交互设计和处理的数据量对决策的影响各不相同。我们从交互和程序两个层面提出了可解释性的关键评估因素。可解释性不得在情境中干扰医患对话和质疑专业角色。同时,可解释性在功能上使作为第二意见的人工智能系统合法化,是建立信任的核心。人工智能系统的虚拟化身有利于基于语言的解释
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Situativität, Funktionalität und Vertrauen: Ergebnisse einer szenariobasierten Interviewstudie zur Erklärbarkeit von KI in der Medizin
A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we interviewed healthcare stakeholders about two scenarios: diagnostics and documentation. The scenarios vary the influence that an AI system has on decision-making through the interaction design and the amount of data processed. We present key evaluation factors for explainability at the interactional and procedural levels. Explainability must not interfere situationally in the doctor-patient conversation and question the professional role. At the same time, explainability functionally legitimizes an AI system as a second opinion and is central to building trust. A virtual embodiment of the AI system is advantageous for language-based explanations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信