层数对栗木胶合梁弯曲性能的影响

Yasemin ŞİMŞEK TÜRKER, S. Kilincarslan
{"title":"层数对栗木胶合梁弯曲性能的影响","authors":"Yasemin ŞİMŞEK TÜRKER, S. Kilincarslan","doi":"10.31466/kfbd.1347435","DOIUrl":null,"url":null,"abstract":"In recent years, advances in adhesive and lamination technologies have offered significant opportunities in the production of high-quality and valuable products from low-quality and non-durable cheap wood raw materials. Lamination generally refers to a multilayer material production method. The main goal of this production process is to develop and improve many properties of the created composite product, such as durability and stability. Laminated timber, called glulam, is a layered composite material formed by preparing timber fibers parallel to each other and gluing them together with the help of glue. In this study, the bending properties of solid, 3-layer and 5-layer glulam beams produced from chestnut tree species were investigated experimentally and numerically. The modulus of elasticity (MOE) of 5-layer glulam beams is 13.39% higher than 3-layer beams and 48.31% higher than solid beams. The modulus of rupture (MOR) value of the 5-layer beam is 24.21% higher than the 3-layer beam and 65.28% higher than the solid beam. There is a maximum difference of 2% between the experimental and numerical analysis results. When the results are compared, it is seen that the results are close to each other.","PeriodicalId":17795,"journal":{"name":"Karadeniz Fen Bilimleri Dergisi","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Layers Number on The Bending Properties of Chestnut Glulam Beams\",\"authors\":\"Yasemin ŞİMŞEK TÜRKER, S. Kilincarslan\",\"doi\":\"10.31466/kfbd.1347435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, advances in adhesive and lamination technologies have offered significant opportunities in the production of high-quality and valuable products from low-quality and non-durable cheap wood raw materials. Lamination generally refers to a multilayer material production method. The main goal of this production process is to develop and improve many properties of the created composite product, such as durability and stability. Laminated timber, called glulam, is a layered composite material formed by preparing timber fibers parallel to each other and gluing them together with the help of glue. In this study, the bending properties of solid, 3-layer and 5-layer glulam beams produced from chestnut tree species were investigated experimentally and numerically. The modulus of elasticity (MOE) of 5-layer glulam beams is 13.39% higher than 3-layer beams and 48.31% higher than solid beams. The modulus of rupture (MOR) value of the 5-layer beam is 24.21% higher than the 3-layer beam and 65.28% higher than the solid beam. There is a maximum difference of 2% between the experimental and numerical analysis results. When the results are compared, it is seen that the results are close to each other.\",\"PeriodicalId\":17795,\"journal\":{\"name\":\"Karadeniz Fen Bilimleri Dergisi\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karadeniz Fen Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31466/kfbd.1347435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karadeniz Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31466/kfbd.1347435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,粘合剂和层压技术的进步为利用低质量和非耐用的廉价木材原料生产高质量和有价值的产品提供了重要机遇。层压一般是指一种多层材料生产方法。这种生产工艺的主要目的是开发和改进所生产的复合产品的许多性能,如耐用性和稳定性。层压木材,又称胶合木,是一种分层复合材料,通过制备相互平行的木材纤维并借助胶水将其粘合在一起而形成。在这项研究中,通过实验和数值计算研究了用栗树树种制作的实心、3 层和 5 层胶合梁的弯曲特性。五层胶合梁的弹性模量(MOE)比三层胶合梁高 13.39%,比实心梁高 48.31%。五层胶合梁的断裂模量(MOR)值比三层梁高 24.21%,比实心梁高 65.28%。实验结果与数值分析结果之间的最大差异为 2%。比较结果可以看出,两者结果接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Layers Number on The Bending Properties of Chestnut Glulam Beams
In recent years, advances in adhesive and lamination technologies have offered significant opportunities in the production of high-quality and valuable products from low-quality and non-durable cheap wood raw materials. Lamination generally refers to a multilayer material production method. The main goal of this production process is to develop and improve many properties of the created composite product, such as durability and stability. Laminated timber, called glulam, is a layered composite material formed by preparing timber fibers parallel to each other and gluing them together with the help of glue. In this study, the bending properties of solid, 3-layer and 5-layer glulam beams produced from chestnut tree species were investigated experimentally and numerically. The modulus of elasticity (MOE) of 5-layer glulam beams is 13.39% higher than 3-layer beams and 48.31% higher than solid beams. The modulus of rupture (MOR) value of the 5-layer beam is 24.21% higher than the 3-layer beam and 65.28% higher than the solid beam. There is a maximum difference of 2% between the experimental and numerical analysis results. When the results are compared, it is seen that the results are close to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信