Min Wang, Yu Lan, Huayu Li, Xiaodong Jing, Sitong Lu, Kexin Deng
{"title":"港口环境效率与城市经济耦合协调度的时空分异与趋势预测:长江三角洲案例研究","authors":"Min Wang, Yu Lan, Huayu Li, Xiaodong Jing, Sitong Lu, Kexin Deng","doi":"10.3390/land13030374","DOIUrl":null,"url":null,"abstract":"Green development is a primary path for ports and cities to achieve a low-carbon transition under the Sustainable Development Goals and a powerful driving force to elevate regional port–city relations to a high level of coordination. In this paper, twenty port cities in the Yangtze River Delta (YRD) were selected and port environmental efficiency (PEE) was calculated through the window SBM model, while the EW-TOPSIS model was used to evaluate high-quality urban economic development (HED). The coupling coordination degree (CCD) model, the kernel density model, GIS spatial analysis, and the grey prediction model were used to further explore the spatial–temporal dynamic evolution and prediction of the CCD between PEE and HED. The results suggested that: (1) PEE fluctuation in the YRD is increasing, with a trend of seaports achieving higher PEE than river ports; (2) HED in the YRD shows upward trends, and the polarization of individual cities is obvious; (3) Temporally, the CCD in the YRD has risen from 0.438 to 0.518. Shanghai consistently maintains intermediate coordination, and Jiangsu has experienced the most significant increase in CCD. Spatially, CCD is led by Lianyungang, Suzhou, Shanghai, and Ningbo-Zhoushan, displaying a decreasing distribution pattern from east to west. The projection for 2026 suggests that all port cities within the YRD will have transitioned to a phase of orderly development. To enhance the coordination level in the YRD, policymakers should consider the YRD as a whole to position the ports functionally and manage them hierarchically, utilize the ports to break down resource boundaries to promote the synergistic division of labor among cities, and then tilt the resources towards Anhui.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"101 s4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial–Temporal Differentiation and Trend Prediction of Coupling Coordination Degree of Port Environmental Efficiency and Urban Economy: A Case Study of the Yangtze River Delta\",\"authors\":\"Min Wang, Yu Lan, Huayu Li, Xiaodong Jing, Sitong Lu, Kexin Deng\",\"doi\":\"10.3390/land13030374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green development is a primary path for ports and cities to achieve a low-carbon transition under the Sustainable Development Goals and a powerful driving force to elevate regional port–city relations to a high level of coordination. In this paper, twenty port cities in the Yangtze River Delta (YRD) were selected and port environmental efficiency (PEE) was calculated through the window SBM model, while the EW-TOPSIS model was used to evaluate high-quality urban economic development (HED). The coupling coordination degree (CCD) model, the kernel density model, GIS spatial analysis, and the grey prediction model were used to further explore the spatial–temporal dynamic evolution and prediction of the CCD between PEE and HED. The results suggested that: (1) PEE fluctuation in the YRD is increasing, with a trend of seaports achieving higher PEE than river ports; (2) HED in the YRD shows upward trends, and the polarization of individual cities is obvious; (3) Temporally, the CCD in the YRD has risen from 0.438 to 0.518. Shanghai consistently maintains intermediate coordination, and Jiangsu has experienced the most significant increase in CCD. Spatially, CCD is led by Lianyungang, Suzhou, Shanghai, and Ningbo-Zhoushan, displaying a decreasing distribution pattern from east to west. The projection for 2026 suggests that all port cities within the YRD will have transitioned to a phase of orderly development. To enhance the coordination level in the YRD, policymakers should consider the YRD as a whole to position the ports functionally and manage them hierarchically, utilize the ports to break down resource boundaries to promote the synergistic division of labor among cities, and then tilt the resources towards Anhui.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"101 s4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/land13030374\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/land13030374","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatial–Temporal Differentiation and Trend Prediction of Coupling Coordination Degree of Port Environmental Efficiency and Urban Economy: A Case Study of the Yangtze River Delta
Green development is a primary path for ports and cities to achieve a low-carbon transition under the Sustainable Development Goals and a powerful driving force to elevate regional port–city relations to a high level of coordination. In this paper, twenty port cities in the Yangtze River Delta (YRD) were selected and port environmental efficiency (PEE) was calculated through the window SBM model, while the EW-TOPSIS model was used to evaluate high-quality urban economic development (HED). The coupling coordination degree (CCD) model, the kernel density model, GIS spatial analysis, and the grey prediction model were used to further explore the spatial–temporal dynamic evolution and prediction of the CCD between PEE and HED. The results suggested that: (1) PEE fluctuation in the YRD is increasing, with a trend of seaports achieving higher PEE than river ports; (2) HED in the YRD shows upward trends, and the polarization of individual cities is obvious; (3) Temporally, the CCD in the YRD has risen from 0.438 to 0.518. Shanghai consistently maintains intermediate coordination, and Jiangsu has experienced the most significant increase in CCD. Spatially, CCD is led by Lianyungang, Suzhou, Shanghai, and Ningbo-Zhoushan, displaying a decreasing distribution pattern from east to west. The projection for 2026 suggests that all port cities within the YRD will have transitioned to a phase of orderly development. To enhance the coordination level in the YRD, policymakers should consider the YRD as a whole to position the ports functionally and manage them hierarchically, utilize the ports to break down resource boundaries to promote the synergistic division of labor among cities, and then tilt the resources towards Anhui.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico