Lisa Marie Benko, V.R. Misko, L. Baraban, D. Makarov, Antonio Maisto, W. Malsche
{"title":"声流体装置中的杰纳斯粒子:自推进与声捕获之间的相互作用","authors":"Lisa Marie Benko, V.R. Misko, L. Baraban, D. Makarov, Antonio Maisto, W. Malsche","doi":"10.3390/micro4010013","DOIUrl":null,"url":null,"abstract":"Acoustic focusing of particle flow in microfluidics has been shown to be an efficient tool for particle separation for various chemical and biomedical applications. The mechanism behind the method is the selective effect of the acoustic radiation force on distinct particles. In this way, they can be selectively focused and separated. The technique can also be applied under stationary conditions, i.e., in the absence of fluid flows. In this study, the manipulation of self-propelled particles, such as Janus particles, in an acoustofluidic setup was investigated. In experiments with self-propelled Janus particles and passive beads, we explored the interplay between self-propulsion and the acoustic radiation force. Our results demonstrated unusual and potentially useful effects such as selective trapping, escape, and assisted escape in binary mixtures of active and passive particles. We also analyzed various aspects related to the behavior of Janus particles in acoustic traps in the presence and absence of flows.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus Particles in Acoustofluidic Setup: The Interplay between Self-Propulsion and Acoustic Trapping\",\"authors\":\"Lisa Marie Benko, V.R. Misko, L. Baraban, D. Makarov, Antonio Maisto, W. Malsche\",\"doi\":\"10.3390/micro4010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic focusing of particle flow in microfluidics has been shown to be an efficient tool for particle separation for various chemical and biomedical applications. The mechanism behind the method is the selective effect of the acoustic radiation force on distinct particles. In this way, they can be selectively focused and separated. The technique can also be applied under stationary conditions, i.e., in the absence of fluid flows. In this study, the manipulation of self-propelled particles, such as Janus particles, in an acoustofluidic setup was investigated. In experiments with self-propelled Janus particles and passive beads, we explored the interplay between self-propulsion and the acoustic radiation force. Our results demonstrated unusual and potentially useful effects such as selective trapping, escape, and assisted escape in binary mixtures of active and passive particles. We also analyzed various aspects related to the behavior of Janus particles in acoustic traps in the presence and absence of flows.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/micro4010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/micro4010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Janus Particles in Acoustofluidic Setup: The Interplay between Self-Propulsion and Acoustic Trapping
Acoustic focusing of particle flow in microfluidics has been shown to be an efficient tool for particle separation for various chemical and biomedical applications. The mechanism behind the method is the selective effect of the acoustic radiation force on distinct particles. In this way, they can be selectively focused and separated. The technique can also be applied under stationary conditions, i.e., in the absence of fluid flows. In this study, the manipulation of self-propelled particles, such as Janus particles, in an acoustofluidic setup was investigated. In experiments with self-propelled Janus particles and passive beads, we explored the interplay between self-propulsion and the acoustic radiation force. Our results demonstrated unusual and potentially useful effects such as selective trapping, escape, and assisted escape in binary mixtures of active and passive particles. We also analyzed various aspects related to the behavior of Janus particles in acoustic traps in the presence and absence of flows.