通过 Alcalase® 水解,鱼 I 型胶原蛋白肽中的活性羧基和游离α-氨基基团增加,从而表现出更高的抗菌和抗氧化活性

IF 1.6 4区 农林科学
Sülhattin Yaşar, Hülya Şen Arslan, Kubra Akgul
{"title":"通过 Alcalase® 水解,鱼 I 型胶原蛋白肽中的活性羧基和游离α-氨基基团增加,从而表现出更高的抗菌和抗氧化活性","authors":"Sülhattin Yaşar, Hülya Şen Arslan, Kubra Akgul","doi":"10.1515/ijfe-2023-0303","DOIUrl":null,"url":null,"abstract":"\n This study aimed to generate low molecular weight peptides (LMWP) from fish collagen type I hydrolysed by increasing activity of Alcalase® from 0.0 to 12.0 (AU-A per 100 g) at 55 °C and 7.4 of pH for 3 h 40 min. The results showed that all enzyme activity levels caused 34–55 % reductions in protein recovery, 1.0–3.0 folds’ increase in free α-amino groups and 1.7–3.2 folds’ increase in carboxyl groups. Degree of hydrolysis ranged from 20 to 30 % with increasing enzyme activity. The number average molecular weight significantly reduced from 3200 g/mol in 0.0 AU-A per 100 g enzyme activity to 1151, 1398, 1175, 1040 and 1246 g/mol in 2.4, 4.8, 7.2, 9.6 and 12.0 AU-A per 100 g enzyme activities, respectively. Depending upon enzyme activity level, the produced LMWP with reactive carboxyl and amino end-groups exhibited 2.5- to 4.0-fold increases in antioxidant capacity and 1.0–3.5 log cfu/ml inhibition of four pathogen bacteria. Highest inhibition of 2.5 log cfu/ml in Escherichia coli was obtained from 2.4 AU-A per 100 g enzyme activity and 3.5 log cfu/ml in Listeria monocytogenes from 9.6 and 12.0 AU-A per 100 g enzyme activity levels. Infrared spectroscopy clearly identified reactive end-groups and showed remarkably differences in molar absorptivity of various molecular regions between non-enzyme and enzyme treated collagen type I molecule. A 9.6 and 12.0 AU-A per 100 g enzyme activity levels were found optimally effective to generate LMWP. In conclusion, LMWP exhibited high antioxidant and antibacterial activity due to increased functional reactive end-groups, and these bio-active peptides may have greater potentialities in various food and pharmaceutical applications.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant activities\",\"authors\":\"Sülhattin Yaşar, Hülya Şen Arslan, Kubra Akgul\",\"doi\":\"10.1515/ijfe-2023-0303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study aimed to generate low molecular weight peptides (LMWP) from fish collagen type I hydrolysed by increasing activity of Alcalase® from 0.0 to 12.0 (AU-A per 100 g) at 55 °C and 7.4 of pH for 3 h 40 min. The results showed that all enzyme activity levels caused 34–55 % reductions in protein recovery, 1.0–3.0 folds’ increase in free α-amino groups and 1.7–3.2 folds’ increase in carboxyl groups. Degree of hydrolysis ranged from 20 to 30 % with increasing enzyme activity. The number average molecular weight significantly reduced from 3200 g/mol in 0.0 AU-A per 100 g enzyme activity to 1151, 1398, 1175, 1040 and 1246 g/mol in 2.4, 4.8, 7.2, 9.6 and 12.0 AU-A per 100 g enzyme activities, respectively. Depending upon enzyme activity level, the produced LMWP with reactive carboxyl and amino end-groups exhibited 2.5- to 4.0-fold increases in antioxidant capacity and 1.0–3.5 log cfu/ml inhibition of four pathogen bacteria. Highest inhibition of 2.5 log cfu/ml in Escherichia coli was obtained from 2.4 AU-A per 100 g enzyme activity and 3.5 log cfu/ml in Listeria monocytogenes from 9.6 and 12.0 AU-A per 100 g enzyme activity levels. Infrared spectroscopy clearly identified reactive end-groups and showed remarkably differences in molar absorptivity of various molecular regions between non-enzyme and enzyme treated collagen type I molecule. A 9.6 and 12.0 AU-A per 100 g enzyme activity levels were found optimally effective to generate LMWP. In conclusion, LMWP exhibited high antioxidant and antibacterial activity due to increased functional reactive end-groups, and these bio-active peptides may have greater potentialities in various food and pharmaceutical applications.\",\"PeriodicalId\":13976,\"journal\":{\"name\":\"International Journal of Food Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1515/ijfe-2023-0303\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2023-0303","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在从鱼类 I 型胶原蛋白中生成低分子量肽(LMWP),在 55 °C 和 pH 值为 7.4 的条件下,将 Alcalase® 的活性从 0.0 提高到 12.0(每 100 克 AU-A),持续 3 小时 40 分钟。结果表明,所有酶活性水平都会导致蛋白质回收率降低 34-55%,游离 α-氨基增加 1.0-3.0 倍,羧基增加 1.7-3.2 倍。随着酶活性的增加,水解度从 20% 到 30% 不等。平均分子量从每 100 克酶活性为 0.0 AU-A 时的 3200 克/摩尔明显降低到每 100 克酶活性为 2.4、4.8、7.2、9.6 和 12.0 AU-A 时的 1151、1398、1175、1040 和 1246 克/摩尔。根据酶活性水平的不同,生产出的具有活性羧基和氨基端基的 LMWP 的抗氧化能力提高了 2.5 至 4.0 倍,对四种病原菌的抑制率为 1.0-3.5 log cfu/ml。每 100 克酶活性为 2.4 AU-A 时,对大肠杆菌的最高抑制率为 2.5 log cfu/ml;每 100 克酶活性为 9.6 AU-A 和 12.0 AU-A 时,对单核细胞增生李斯特菌的抑制率为 3.5 log cfu/ml。红外光谱分析清楚地确定了反应性末端基团,并显示出未加酶和经酶处理的 I 型胶原蛋白分子各分子区域摩尔吸收率的显著差异。在生成 LMWP 的过程中,每 100 克酶的活性水平分别为 9.6 和 12.0 AU-A。总之,由于功能性活性末端基团的增加,LMWP 具有很高的抗氧化和抗菌活性,这些生物活性肽在各种食品和医药应用中可能具有更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant activities
This study aimed to generate low molecular weight peptides (LMWP) from fish collagen type I hydrolysed by increasing activity of Alcalase® from 0.0 to 12.0 (AU-A per 100 g) at 55 °C and 7.4 of pH for 3 h 40 min. The results showed that all enzyme activity levels caused 34–55 % reductions in protein recovery, 1.0–3.0 folds’ increase in free α-amino groups and 1.7–3.2 folds’ increase in carboxyl groups. Degree of hydrolysis ranged from 20 to 30 % with increasing enzyme activity. The number average molecular weight significantly reduced from 3200 g/mol in 0.0 AU-A per 100 g enzyme activity to 1151, 1398, 1175, 1040 and 1246 g/mol in 2.4, 4.8, 7.2, 9.6 and 12.0 AU-A per 100 g enzyme activities, respectively. Depending upon enzyme activity level, the produced LMWP with reactive carboxyl and amino end-groups exhibited 2.5- to 4.0-fold increases in antioxidant capacity and 1.0–3.5 log cfu/ml inhibition of four pathogen bacteria. Highest inhibition of 2.5 log cfu/ml in Escherichia coli was obtained from 2.4 AU-A per 100 g enzyme activity and 3.5 log cfu/ml in Listeria monocytogenes from 9.6 and 12.0 AU-A per 100 g enzyme activity levels. Infrared spectroscopy clearly identified reactive end-groups and showed remarkably differences in molar absorptivity of various molecular regions between non-enzyme and enzyme treated collagen type I molecule. A 9.6 and 12.0 AU-A per 100 g enzyme activity levels were found optimally effective to generate LMWP. In conclusion, LMWP exhibited high antioxidant and antibacterial activity due to increased functional reactive end-groups, and these bio-active peptides may have greater potentialities in various food and pharmaceutical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Food Engineering
International Journal of Food Engineering 农林科学-食品科技
CiteScore
3.20
自引率
0.00%
发文量
52
审稿时长
3.8 months
期刊介绍: International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信