V. M. Boiko, V. V. Lotov, A. Yu. Nesterov, S. V. Poplavski
{"title":"高液体浓度下超音速气液射流的结构","authors":"V. M. Boiko, V. V. Lotov, A. Yu. Nesterov, S. V. Poplavski","doi":"10.1134/S0869864323060069","DOIUrl":null,"url":null,"abstract":"<div><p>Supersonic gas-liquid jets of a coaxial atomizer at high liquid concentrations are studied experimentally. A complex of optical techniques is used for studying the droplet sizes: visualization and particle image velocimetry, laser Doppler anemometry, and Malvern Spraytec instrument. The research shows that the velocity and concentration profiles change with flow rate growth: an extended region with small droplet velocities appears behind the bow shock wave; in this case, the concentration decreases significantly slower than that at low liquid flow rates. A small increase in the jet energy at liquid flow rates greater than 100 l/h and a noticeable increase in the droplet size testify that the gas jet capabilities for breaking up the liquid in the described regimes are exhausted.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of a supersonic gas-liquid jet at high liquid concentrations\",\"authors\":\"V. M. Boiko, V. V. Lotov, A. Yu. Nesterov, S. V. Poplavski\",\"doi\":\"10.1134/S0869864323060069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supersonic gas-liquid jets of a coaxial atomizer at high liquid concentrations are studied experimentally. A complex of optical techniques is used for studying the droplet sizes: visualization and particle image velocimetry, laser Doppler anemometry, and Malvern Spraytec instrument. The research shows that the velocity and concentration profiles change with flow rate growth: an extended region with small droplet velocities appears behind the bow shock wave; in this case, the concentration decreases significantly slower than that at low liquid flow rates. A small increase in the jet energy at liquid flow rates greater than 100 l/h and a noticeable increase in the droplet size testify that the gas jet capabilities for breaking up the liquid in the described regimes are exhausted.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323060069\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323060069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Structure of a supersonic gas-liquid jet at high liquid concentrations
Supersonic gas-liquid jets of a coaxial atomizer at high liquid concentrations are studied experimentally. A complex of optical techniques is used for studying the droplet sizes: visualization and particle image velocimetry, laser Doppler anemometry, and Malvern Spraytec instrument. The research shows that the velocity and concentration profiles change with flow rate growth: an extended region with small droplet velocities appears behind the bow shock wave; in this case, the concentration decreases significantly slower than that at low liquid flow rates. A small increase in the jet energy at liquid flow rates greater than 100 l/h and a noticeable increase in the droplet size testify that the gas jet capabilities for breaking up the liquid in the described regimes are exhausted.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.