液体传输系数分子建模新方法

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
V. Ya. Rudyak, E. V. Lezhnev
{"title":"液体传输系数分子建模新方法","authors":"V. Ya. Rudyak,&nbsp;E. V. Lezhnev","doi":"10.1134/S0869864323060057","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"30 6","pages":"1021 - 1030"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method of molecular modeling of liquid transport coefficients\",\"authors\":\"V. Ya. Rudyak,&nbsp;E. V. Lezhnev\",\"doi\":\"10.1134/S0869864323060057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":\"30 6\",\"pages\":\"1021 - 1030\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323060057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323060057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种流体传输系数的分子建模方法,它是分子动力学方法的一种替代方法。输运系数是利用波动-耗散定理确定的。分子动力学是随机计算的,分子间的作用力是通过创建的相应数据库设定的。构建了分子间作用力的分布函数,并获得了分子间作用力的解析近似公式。以计算液态氩和苯的粘度和导热系数为例,证明了该方法的有效性。将所获得的数据与实验数据和分子动力学建模数据进行了比较,结果表明两者具有良好的一致性。在建模精度相同的情况下,与分子动力学方法相比,所开发的方法明显更省时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New method of molecular modeling of liquid transport coefficients

The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信