基于汽车雷达有意局部干扰的 FMCW 干扰波形估计

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sungpil Cheon, Hyungwoo Kim, B. Kim
{"title":"基于汽车雷达有意局部干扰的 FMCW 干扰波形估计","authors":"Sungpil Cheon, Hyungwoo Kim, B. Kim","doi":"10.26866/jees.2024.4.r.222","DOIUrl":null,"url":null,"abstract":"We propose a new method to estimate the waveforms of frequency-modulated continuous-wave (FMCW) interferers by intentional interference. The proposed method utilizes the crossing interference of FMCW radar by adaptive waveform configuration. The victim radar analyzes the periodicity and frequency of the interference signal from the mixer at the FMCW receiver. The bandwidth, slope, and intervals of the interferer waveform are derived from multiple adaptive waveforms from interference detection results. The estimated time and frequency waveform parameters of the interferer can be utilized to generate an interference-free waveform. The proposed approach has been tested and validated using two different mmWave commercial off-the-shelf automotive FMCW radars: the AWR2243 and AWR2944 evaluation boards. In three different scenarios in indoor and outdoor environments, the proposed method successfully estimated interferer waveform parameters with 0.9 seconds of monitoring processing and less than 3% error.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FMCW Interference Waveform Estimation Based on Intentional Local Interference for Automotive Radars\",\"authors\":\"Sungpil Cheon, Hyungwoo Kim, B. Kim\",\"doi\":\"10.26866/jees.2024.4.r.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method to estimate the waveforms of frequency-modulated continuous-wave (FMCW) interferers by intentional interference. The proposed method utilizes the crossing interference of FMCW radar by adaptive waveform configuration. The victim radar analyzes the periodicity and frequency of the interference signal from the mixer at the FMCW receiver. The bandwidth, slope, and intervals of the interferer waveform are derived from multiple adaptive waveforms from interference detection results. The estimated time and frequency waveform parameters of the interferer can be utilized to generate an interference-free waveform. The proposed approach has been tested and validated using two different mmWave commercial off-the-shelf automotive FMCW radars: the AWR2243 and AWR2944 evaluation boards. In three different scenarios in indoor and outdoor environments, the proposed method successfully estimated interferer waveform parameters with 0.9 seconds of monitoring processing and less than 3% error.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2024.4.r.222\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2024.4.r.222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通过有意干扰来估计频率调制连续波(FMCW)干扰器波形的新方法。该方法通过自适应波形配置利用 FMCW 雷达的交叉干扰。受害雷达在 FMCW 接收机上分析来自混频器的干扰信号的周期性和频率。干扰波形的带宽、斜率和间隔是从干扰检测结果的多个自适应波形中得出的。估计的干扰波形的时间和频率参数可用于生成无干扰波形。已使用两种不同的毫米波现成商用车用 FMCW 雷达(AWR2243 和 AWR2944 评估板)对所提出的方法进行了测试和验证。在室内和室外环境的三个不同场景中,所提出的方法成功地估计了干扰波形参数,监测处理时间为 0.9 秒,误差小于 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FMCW Interference Waveform Estimation Based on Intentional Local Interference for Automotive Radars
We propose a new method to estimate the waveforms of frequency-modulated continuous-wave (FMCW) interferers by intentional interference. The proposed method utilizes the crossing interference of FMCW radar by adaptive waveform configuration. The victim radar analyzes the periodicity and frequency of the interference signal from the mixer at the FMCW receiver. The bandwidth, slope, and intervals of the interferer waveform are derived from multiple adaptive waveforms from interference detection results. The estimated time and frequency waveform parameters of the interferer can be utilized to generate an interference-free waveform. The proposed approach has been tested and validated using two different mmWave commercial off-the-shelf automotive FMCW radars: the AWR2243 and AWR2944 evaluation boards. In three different scenarios in indoor and outdoor environments, the proposed method successfully estimated interferer waveform parameters with 0.9 seconds of monitoring processing and less than 3% error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信