水促进对降解正极的定向修复,实现可持续锂离子电池

IF 18.7 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
SusMat Pub Date : 2024-03-21 DOI:10.1002/sus2.194
Jiao Lin, Xiaodong Zhang, Zhujie Li, Ersha Fan, Xiaowei Lv, Renjie Chen, Feng Wu, Li Li
{"title":"水促进对降解正极的定向修复,实现可持续锂离子电池","authors":"Jiao Lin, Xiaodong Zhang, Zhujie Li, Ersha Fan, Xiaowei Lv, Renjie Chen, Feng Wu, Li Li","doi":"10.1002/sus2.194","DOIUrl":null,"url":null,"abstract":"Directly repairing end‐of‐life lithium‐ion battery cathodes poses significant challenges due to the diverse compositions of the wastes. Here, we propose a water‐facilitated targeted repair strategy applicable to various end‐of‐life batches and cathodes. The process involves initiating structural repair and reconstructing particle morphology in degraded LiMn2O4 (LMO) through an additional thermal drive post‐ambient water remanganization, achieving elemental repair. Compared to solid‐phase repair, the resulting LMO material exhibits superior electrochemical and kinetic characteristics. The theoretical analysis highlights the impact of Mn defects on the structural stability and electron transfer rate of degraded materials. The propensity of Mn ions to diffuse within the Mn layer, specifically occupying the Mn 16d site instead of the Li 8a site, theoretically supports the feasibility of ambient water remanganization. Moreover, this method proves effective in the relithiation of degraded layered cathode materials, yielding single crystals. By combining low energy consumption, environmental friendliness, and recyclability, our study proposes a sustainable approach to utilizing spent batteries. This strategy holds the potential to enable the industrial direct repair of deteriorated cathode materials.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":null,"pages":null},"PeriodicalIF":18.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water‐facilitated targeted repair of degraded cathodes for sustainable lithium‐ion batteries\",\"authors\":\"Jiao Lin, Xiaodong Zhang, Zhujie Li, Ersha Fan, Xiaowei Lv, Renjie Chen, Feng Wu, Li Li\",\"doi\":\"10.1002/sus2.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directly repairing end‐of‐life lithium‐ion battery cathodes poses significant challenges due to the diverse compositions of the wastes. Here, we propose a water‐facilitated targeted repair strategy applicable to various end‐of‐life batches and cathodes. The process involves initiating structural repair and reconstructing particle morphology in degraded LiMn2O4 (LMO) through an additional thermal drive post‐ambient water remanganization, achieving elemental repair. Compared to solid‐phase repair, the resulting LMO material exhibits superior electrochemical and kinetic characteristics. The theoretical analysis highlights the impact of Mn defects on the structural stability and electron transfer rate of degraded materials. The propensity of Mn ions to diffuse within the Mn layer, specifically occupying the Mn 16d site instead of the Li 8a site, theoretically supports the feasibility of ambient water remanganization. Moreover, this method proves effective in the relithiation of degraded layered cathode materials, yielding single crystals. By combining low energy consumption, environmental friendliness, and recyclability, our study proposes a sustainable approach to utilizing spent batteries. This strategy holds the potential to enable the industrial direct repair of deteriorated cathode materials.\",\"PeriodicalId\":29781,\"journal\":{\"name\":\"SusMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SusMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.194\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.194","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于废弃物的成分多种多样,直接修复报废锂离子电池阴极面临着巨大挑战。在此,我们提出了一种适用于各种报废批次和阴极的水促进定向修复策略。该过程包括在降解的锰酸锂(LMO)中,通过环境水重锰化后的额外热驱动,启动结构修复并重建颗粒形态,从而实现元素修复。与固相修复相比,得到的 LMO 材料具有更优越的电化学和动力学特性。理论分析强调了锰缺陷对降解材料的结构稳定性和电子转移率的影响。锰离子倾向于在锰层内扩散,特别是占据锰 16d 位点而不是锂 8a 位点,这从理论上支持了环境水重锰化的可行性。此外,这种方法还能有效地对降解的层状阴极材料进行再锰化,生成单晶体。通过将低能耗、环保和可回收性结合起来,我们的研究提出了一种可持续的废电池利用方法。这种策略有望实现对劣化阴极材料的工业直接修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water‐facilitated targeted repair of degraded cathodes for sustainable lithium‐ion batteries
Directly repairing end‐of‐life lithium‐ion battery cathodes poses significant challenges due to the diverse compositions of the wastes. Here, we propose a water‐facilitated targeted repair strategy applicable to various end‐of‐life batches and cathodes. The process involves initiating structural repair and reconstructing particle morphology in degraded LiMn2O4 (LMO) through an additional thermal drive post‐ambient water remanganization, achieving elemental repair. Compared to solid‐phase repair, the resulting LMO material exhibits superior electrochemical and kinetic characteristics. The theoretical analysis highlights the impact of Mn defects on the structural stability and electron transfer rate of degraded materials. The propensity of Mn ions to diffuse within the Mn layer, specifically occupying the Mn 16d site instead of the Li 8a site, theoretically supports the feasibility of ambient water remanganization. Moreover, this method proves effective in the relithiation of degraded layered cathode materials, yielding single crystals. By combining low energy consumption, environmental friendliness, and recyclability, our study proposes a sustainable approach to utilizing spent batteries. This strategy holds the potential to enable the industrial direct repair of deteriorated cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
4.20%
发文量
0
期刊介绍: SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信