二维网格的最佳和典型 $$L^2$ 差异

IF 1 3区 数学 Q1 MATHEMATICS
Bence Borda
{"title":"二维网格的最佳和典型 $$L^2$ 差异","authors":"Bence Borda","doi":"10.1007/s10231-024-01440-4","DOIUrl":null,"url":null,"abstract":"<div><p>We undertake a detailed study of the <span>\\(L^2\\)</span> discrepancy of 2-dimensional Korobov lattices and their irrational analogues, either with or without symmetrization. We give a full characterization of such lattices with optimal <span>\\(L^2\\)</span> discrepancy in terms of the continued fraction partial quotients, and compute the precise asymptotics whenever the continued fraction expansion is explicitly known, such as for quadratic irrationals or Euler’s number <i>e</i>. In the metric theory, we find the asymptotics of the <span>\\(L^2\\)</span> discrepancy for almost every irrational, and the limit distribution for randomly chosen rational and irrational lattices.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01440-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal and typical \\\\(L^2\\\\) discrepancy of 2-dimensional lattices\",\"authors\":\"Bence Borda\",\"doi\":\"10.1007/s10231-024-01440-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We undertake a detailed study of the <span>\\\\(L^2\\\\)</span> discrepancy of 2-dimensional Korobov lattices and their irrational analogues, either with or without symmetrization. We give a full characterization of such lattices with optimal <span>\\\\(L^2\\\\)</span> discrepancy in terms of the continued fraction partial quotients, and compute the precise asymptotics whenever the continued fraction expansion is explicitly known, such as for quadratic irrationals or Euler’s number <i>e</i>. In the metric theory, we find the asymptotics of the <span>\\\\(L^2\\\\)</span> discrepancy for almost every irrational, and the limit distribution for randomly chosen rational and irrational lattices.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01440-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01440-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01440-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对二维科罗博夫网格及其无理类似物的\(L^2\) 差异进行了详细研究,包括对称或不对称。我们用续分数部分商给出了具有最优 \(L^2\) 差异的网格的完整特征,并在明确知道续分数展开的情况下计算了精确的渐近线,例如二次无理数或欧拉数 e。在度量理论中,我们找到了几乎所有无理数的 \(L^2\) 差异的渐近线,以及随机选择的有理和无理网格的极限分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal and typical \(L^2\) discrepancy of 2-dimensional lattices

We undertake a detailed study of the \(L^2\) discrepancy of 2-dimensional Korobov lattices and their irrational analogues, either with or without symmetrization. We give a full characterization of such lattices with optimal \(L^2\) discrepancy in terms of the continued fraction partial quotients, and compute the precise asymptotics whenever the continued fraction expansion is explicitly known, such as for quadratic irrationals or Euler’s number e. In the metric theory, we find the asymptotics of the \(L^2\) discrepancy for almost every irrational, and the limit distribution for randomly chosen rational and irrational lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信