Leah M. Clarke, Jake W. O’Brien, Aimee K. Murray, Wll Gaze, Kevin V. Thomas
{"title":"基于废水的抗菌药耐药性监测流行病学综述","authors":"Leah M. Clarke, Jake W. O’Brien, Aimee K. Murray, Wll Gaze, Kevin V. Thomas","doi":"10.20517/jeea.2023.29","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance (AMR) is recognized as one of the most serious threats to public health. Unparalleled population growth and accelerated rates of AMR emergence and dissemination have resulted in both novel resistance in pathogenic organisms and the re-appearance of infections that were formerly under control. Consequently, this has led to an increased quantity of infectious diseases. One of the main drivers of antimicrobial overuse is inappropriate prescribing in human and veterinary medicine. The ability to rapidly survey the spread of antimicrobial resistance within human populations is key for its prevention, intervention, and control. However, many constraints are present for current clinical surveillance systems and their capacity to determine AMR dynamics in the microbiome of healthy individuals as well as in clinical pathogens causing infections. Wastewater-based epidemiology (WBE) is an emergent technique that has the capacity to act as a supplementary measure for current infectious disease surveillance systems and as an early warning system for infectious disease outbreaks. The development of disease outbreaks to the community level can be monitored in real time through the analysis of population pooled wastewater. This review provides an introduction to using wastewater-based epidemiology to monitor AMR bacteria, as well as an overview of wastewater-based epidemiology and its components.","PeriodicalId":73738,"journal":{"name":"Journal of environmental exposure assessment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of wastewater-based epidemiology for antimicrobial resistance surveillance\",\"authors\":\"Leah M. Clarke, Jake W. O’Brien, Aimee K. Murray, Wll Gaze, Kevin V. Thomas\",\"doi\":\"10.20517/jeea.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial resistance (AMR) is recognized as one of the most serious threats to public health. Unparalleled population growth and accelerated rates of AMR emergence and dissemination have resulted in both novel resistance in pathogenic organisms and the re-appearance of infections that were formerly under control. Consequently, this has led to an increased quantity of infectious diseases. One of the main drivers of antimicrobial overuse is inappropriate prescribing in human and veterinary medicine. The ability to rapidly survey the spread of antimicrobial resistance within human populations is key for its prevention, intervention, and control. However, many constraints are present for current clinical surveillance systems and their capacity to determine AMR dynamics in the microbiome of healthy individuals as well as in clinical pathogens causing infections. Wastewater-based epidemiology (WBE) is an emergent technique that has the capacity to act as a supplementary measure for current infectious disease surveillance systems and as an early warning system for infectious disease outbreaks. The development of disease outbreaks to the community level can be monitored in real time through the analysis of population pooled wastewater. This review provides an introduction to using wastewater-based epidemiology to monitor AMR bacteria, as well as an overview of wastewater-based epidemiology and its components.\",\"PeriodicalId\":73738,\"journal\":{\"name\":\"Journal of environmental exposure assessment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental exposure assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jeea.2023.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental exposure assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jeea.2023.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
抗菌药耐药性(AMR)被认为是对公共卫生最严重的威胁之一。无与伦比的人口增长以及 AMR 出现和传播速度的加快,导致病原生物产生新的抗药性,以及以前受到控制的感染再次出现。因此,这导致了传染病数量的增加。过度使用抗菌药物的主要原因之一是人类和兽医开具处方不当。能够迅速调查抗菌药耐药性在人类群体中的传播情况,是预防、干预和控制抗菌药耐药性的关键。然而,目前的临床监测系统及其确定健康人微生物组和引起感染的临床病原体中 AMR 动态的能力受到许多限制。基于废水的流行病学(WBE)是一种新兴技术,有能力作为当前传染病监测系统的补充措施和传染病爆发的预警系统。通过分析汇集在一起的人群废水,可以实时监测疾病爆发在社区层面的发展情况。本综述介绍了如何利用基于废水的流行病学来监测 AMR 细菌,并概述了基于废水的流行病学及其组成部分。
A review of wastewater-based epidemiology for antimicrobial resistance surveillance
Antimicrobial resistance (AMR) is recognized as one of the most serious threats to public health. Unparalleled population growth and accelerated rates of AMR emergence and dissemination have resulted in both novel resistance in pathogenic organisms and the re-appearance of infections that were formerly under control. Consequently, this has led to an increased quantity of infectious diseases. One of the main drivers of antimicrobial overuse is inappropriate prescribing in human and veterinary medicine. The ability to rapidly survey the spread of antimicrobial resistance within human populations is key for its prevention, intervention, and control. However, many constraints are present for current clinical surveillance systems and their capacity to determine AMR dynamics in the microbiome of healthy individuals as well as in clinical pathogens causing infections. Wastewater-based epidemiology (WBE) is an emergent technique that has the capacity to act as a supplementary measure for current infectious disease surveillance systems and as an early warning system for infectious disease outbreaks. The development of disease outbreaks to the community level can be monitored in real time through the analysis of population pooled wastewater. This review provides an introduction to using wastewater-based epidemiology to monitor AMR bacteria, as well as an overview of wastewater-based epidemiology and its components.