Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, Simon J. Dadson
{"title":"尼泊尔季风后干燥模拟:对山体滑坡危害的影响","authors":"Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, Simon J. Dadson","doi":"10.5194/egusphere-2024-397","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Soil moisture is a key preconditioning factor influencing hillslope stability and the initiation of landslides. Direct measurements of soil moisture on a large scale are logistically complicated, expensive, and therefore sparse, resulting in large data gaps. In this study, we calibrate a numerical land surface model to improve our representation of post-monsoon soil drying in landslide-prone Nepal. We use a parameter perturbation experiment to identify optimal parameter sets at three field monitoring sites and evaluate the performance of those optimal parameter sets at each location. This process enables the calibration of key soil hydraulic parameters, in particular a higher hydraulic conductivity and a lower saturation moisture content relative to the default parameter setting. Runs with the calibrated model parameters provide a substantially more accurate (50 % or greater reduction in root mean squared error) soil moisture record than those with the default model parameters, even when calibrated from sites as much as 250 km apart. This process enables meaningful calculation of post-monsoon soil moisture decay at locations with no in situ monitoring, so as to inform a key component of landslide susceptibility mapping in Nepal and other regions where field measurements of soil moisture are limited.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"180 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of post-monsoon drying in Nepal: implications for landslide hazard\",\"authors\":\"Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, Simon J. Dadson\",\"doi\":\"10.5194/egusphere-2024-397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Soil moisture is a key preconditioning factor influencing hillslope stability and the initiation of landslides. Direct measurements of soil moisture on a large scale are logistically complicated, expensive, and therefore sparse, resulting in large data gaps. In this study, we calibrate a numerical land surface model to improve our representation of post-monsoon soil drying in landslide-prone Nepal. We use a parameter perturbation experiment to identify optimal parameter sets at three field monitoring sites and evaluate the performance of those optimal parameter sets at each location. This process enables the calibration of key soil hydraulic parameters, in particular a higher hydraulic conductivity and a lower saturation moisture content relative to the default parameter setting. Runs with the calibrated model parameters provide a substantially more accurate (50 % or greater reduction in root mean squared error) soil moisture record than those with the default model parameters, even when calibrated from sites as much as 250 km apart. This process enables meaningful calculation of post-monsoon soil moisture decay at locations with no in situ monitoring, so as to inform a key component of landslide susceptibility mapping in Nepal and other regions where field measurements of soil moisture are limited.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-397\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-397","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Modelling of post-monsoon drying in Nepal: implications for landslide hazard
Abstract. Soil moisture is a key preconditioning factor influencing hillslope stability and the initiation of landslides. Direct measurements of soil moisture on a large scale are logistically complicated, expensive, and therefore sparse, resulting in large data gaps. In this study, we calibrate a numerical land surface model to improve our representation of post-monsoon soil drying in landslide-prone Nepal. We use a parameter perturbation experiment to identify optimal parameter sets at three field monitoring sites and evaluate the performance of those optimal parameter sets at each location. This process enables the calibration of key soil hydraulic parameters, in particular a higher hydraulic conductivity and a lower saturation moisture content relative to the default parameter setting. Runs with the calibrated model parameters provide a substantially more accurate (50 % or greater reduction in root mean squared error) soil moisture record than those with the default model parameters, even when calibrated from sites as much as 250 km apart. This process enables meaningful calculation of post-monsoon soil moisture decay at locations with no in situ monitoring, so as to inform a key component of landslide susceptibility mapping in Nepal and other regions where field measurements of soil moisture are limited.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).