{"title":"线性状态延迟分数系统的相对可控性","authors":"","doi":"10.1007/s13540-024-00270-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new <span> <span>\\(\\alpha \\)</span> </span>-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative controllability of linear state-delay fractional systems\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00270-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new <span> <span>\\\\(\\\\alpha \\\\)</span> </span>-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00270-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00270-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Relative controllability of linear state-delay fractional systems
Abstract
In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new \(\alpha \)-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.