{"title":"多元算术图特多项式的卷积公式","authors":"Tianlong Ma, Xian'an Jin, Weiling Yang","doi":"10.1016/j.aam.2024.102692","DOIUrl":null,"url":null,"abstract":"<div><p>The multivariate arithmetic Tutte polynomial of arithmetic matroids is a generalization of the multivariate Tutte polynomial of matroids. In this note, we give the convolution formulas for the multivariate arithmetic Tutte polynomial of the product of two arithmetic matroids. In particular, the convolution formulas for the multivariate arithmetic Tutte polynomial of an arithmetic matroid are obtained. Applying our results, several known convolution formulas including <span>[5, Theorem 10.9 and Corollary 10.10]</span> and <span>[1, Theorems 1 and 4]</span> are proved by a purely combinatorial proof. The proofs presented here are significantly shorter than the previous ones. In addition, we obtain a convolution formula for the characteristic polynomial of an arithmetic matroid.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution formulas for multivariate arithmetic Tutte polynomials\",\"authors\":\"Tianlong Ma, Xian'an Jin, Weiling Yang\",\"doi\":\"10.1016/j.aam.2024.102692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The multivariate arithmetic Tutte polynomial of arithmetic matroids is a generalization of the multivariate Tutte polynomial of matroids. In this note, we give the convolution formulas for the multivariate arithmetic Tutte polynomial of the product of two arithmetic matroids. In particular, the convolution formulas for the multivariate arithmetic Tutte polynomial of an arithmetic matroid are obtained. Applying our results, several known convolution formulas including <span>[5, Theorem 10.9 and Corollary 10.10]</span> and <span>[1, Theorems 1 and 4]</span> are proved by a purely combinatorial proof. The proofs presented here are significantly shorter than the previous ones. In addition, we obtain a convolution formula for the characteristic polynomial of an arithmetic matroid.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582400023X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400023X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
算术矩阵的多元算术图特多项式是矩阵的多元图特多项式的广义化。在本说明中,我们给出了两个算术矩阵乘积的多元算术 Tutte 多项式的卷积公式。特别是,我们得到了算术矩阵的多元算术 Tutte 多项式的卷积公式。应用我们的结果,一些已知的卷积公式,包括[5,定理 10.9 和推论 10.10]和[1,定理 1 和 4],都可以通过纯粹的组合证明得到。这里的证明比之前的证明要短得多。此外,我们还得到了算术矩阵的特征多项式的卷积公式。
Convolution formulas for multivariate arithmetic Tutte polynomials
The multivariate arithmetic Tutte polynomial of arithmetic matroids is a generalization of the multivariate Tutte polynomial of matroids. In this note, we give the convolution formulas for the multivariate arithmetic Tutte polynomial of the product of two arithmetic matroids. In particular, the convolution formulas for the multivariate arithmetic Tutte polynomial of an arithmetic matroid are obtained. Applying our results, several known convolution formulas including [5, Theorem 10.9 and Corollary 10.10] and [1, Theorems 1 and 4] are proved by a purely combinatorial proof. The proofs presented here are significantly shorter than the previous ones. In addition, we obtain a convolution formula for the characteristic polynomial of an arithmetic matroid.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.