{"title":"一步法合成用于太阳能流化床蓄热系统的 Al2O3-β-Sialon 纳米晶须陶瓷","authors":"Zhi Tu, Xinbin Lao, Xiaoyang Xu, Jianmin Liu, Jian Liang, Weihui Jiang","doi":"10.1016/j.nxnano.2023.100039","DOIUrl":null,"url":null,"abstract":"<div><p>Sensible thermal storage ceramics in the form of the fluid-bed show good competency on dealing with the intermittency of renewable energy and improving energy utilization efficiency by integration the functions of thermal absorption and storage. In-situ nano-sized β-Sialon whiskers reinforced Al<sub>2</sub>O<sub>3</sub>-based ceramic materials for fluid-bed thermal storage system were one-step synthesized by aluminothermic reduction method, using solid waste coal-series kaolin and Al powder as main raw materials and firing at 1500 °C in N<sub>2</sub> atmosphere. The effects of Al content and firing temperature on phase evolution, microstructure and properties of fired samples were researched by XRD, SEM, TEM, etc. The results showed that nano-sized β-Sialon whiskers could be in-situ synthesized at 1300 °C, which effectively enhanced the bending strength of fired samples. The highest β-Sialon content and the optimal properties could be achieved at 1500 °C while coal-series kaolin and Al mass ratio was equal to 70∶30, which were listed as follows: 30.7 % β-Sialon content, 74.9 MPa high-temperature bending strength (at 1400 °C), 6.17 × 10<sup>-6</sup>·°C<sup>-1</sup> thermal expansion coefficient (room temperature-1000 °C), 0.74 J·(g·K)<sup>-1</sup> specific heat capacity (at room temperature), 873.90 kJ·kg<sup>-1</sup> theoretical thermal storage density (ΔT=900 °C), which is suitable as the thermal storage material for the fluid-bed thermal storage system.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000396/pdfft?md5=9c403c9fda9225cbe21753155e00dc58&pid=1-s2.0-S2949829523000396-main.pdf","citationCount":"0","resultStr":"{\"title\":\"One-step synthesis of Al2O3–β-Sialon nanowhiskers ceramics for fluid-bed thermal storage system of solar energy\",\"authors\":\"Zhi Tu, Xinbin Lao, Xiaoyang Xu, Jianmin Liu, Jian Liang, Weihui Jiang\",\"doi\":\"10.1016/j.nxnano.2023.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sensible thermal storage ceramics in the form of the fluid-bed show good competency on dealing with the intermittency of renewable energy and improving energy utilization efficiency by integration the functions of thermal absorption and storage. In-situ nano-sized β-Sialon whiskers reinforced Al<sub>2</sub>O<sub>3</sub>-based ceramic materials for fluid-bed thermal storage system were one-step synthesized by aluminothermic reduction method, using solid waste coal-series kaolin and Al powder as main raw materials and firing at 1500 °C in N<sub>2</sub> atmosphere. The effects of Al content and firing temperature on phase evolution, microstructure and properties of fired samples were researched by XRD, SEM, TEM, etc. The results showed that nano-sized β-Sialon whiskers could be in-situ synthesized at 1300 °C, which effectively enhanced the bending strength of fired samples. The highest β-Sialon content and the optimal properties could be achieved at 1500 °C while coal-series kaolin and Al mass ratio was equal to 70∶30, which were listed as follows: 30.7 % β-Sialon content, 74.9 MPa high-temperature bending strength (at 1400 °C), 6.17 × 10<sup>-6</sup>·°C<sup>-1</sup> thermal expansion coefficient (room temperature-1000 °C), 0.74 J·(g·K)<sup>-1</sup> specific heat capacity (at room temperature), 873.90 kJ·kg<sup>-1</sup> theoretical thermal storage density (ΔT=900 °C), which is suitable as the thermal storage material for the fluid-bed thermal storage system.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829523000396/pdfft?md5=9c403c9fda9225cbe21753155e00dc58&pid=1-s2.0-S2949829523000396-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829523000396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829523000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-step synthesis of Al2O3–β-Sialon nanowhiskers ceramics for fluid-bed thermal storage system of solar energy
Sensible thermal storage ceramics in the form of the fluid-bed show good competency on dealing with the intermittency of renewable energy and improving energy utilization efficiency by integration the functions of thermal absorption and storage. In-situ nano-sized β-Sialon whiskers reinforced Al2O3-based ceramic materials for fluid-bed thermal storage system were one-step synthesized by aluminothermic reduction method, using solid waste coal-series kaolin and Al powder as main raw materials and firing at 1500 °C in N2 atmosphere. The effects of Al content and firing temperature on phase evolution, microstructure and properties of fired samples were researched by XRD, SEM, TEM, etc. The results showed that nano-sized β-Sialon whiskers could be in-situ synthesized at 1300 °C, which effectively enhanced the bending strength of fired samples. The highest β-Sialon content and the optimal properties could be achieved at 1500 °C while coal-series kaolin and Al mass ratio was equal to 70∶30, which were listed as follows: 30.7 % β-Sialon content, 74.9 MPa high-temperature bending strength (at 1400 °C), 6.17 × 10-6·°C-1 thermal expansion coefficient (room temperature-1000 °C), 0.74 J·(g·K)-1 specific heat capacity (at room temperature), 873.90 kJ·kg-1 theoretical thermal storage density (ΔT=900 °C), which is suitable as the thermal storage material for the fluid-bed thermal storage system.