石墨烯量子点--用于水处理的吸附纳米材料

Q1 Environmental Science
Ayesha Kausar , Ishaq Ahmad
{"title":"石墨烯量子点--用于水处理的吸附纳米材料","authors":"Ayesha Kausar ,&nbsp;Ishaq Ahmad","doi":"10.1016/j.enmm.2024.100943","DOIUrl":null,"url":null,"abstract":"<div><p>Due to industrial, commercial, and human activities, water pollution or contamination has become a stern environmental threat affecting all the living species. Consequently, efficient water pollution treatment technologies have been focused due to increasing global demands of clean water. Among various purification methodologies, competent adsorption processes <em>via</em> adsorbent materials have gained research interest. Graphene quantum dots are tiny spherical carbon nanoparticles having enormous technical potential owing to unique fluorescence, quantum, and electronic features. Characters of quantum dots have been further enhanced thru modification and nanocomposite formation. Accordingly, design, microstructure, robustness, and essential structural and physical features of graphene quantum dots derived nanomaterials have been foreseen in literature. This up-to-date overview highpoints the fabrication methodologies, attained features, and technical adsorption potential of graphene quantum dot, modified graphene quantum dot and resulting nanocomposites. Due to high surface area and specific physical/applied properties, graphene quantum dots have revealed fine potential towards the adsorption of hazardous water pollutants including dyes, toxic metal ions, and noxious heavy metal ions. Henceforth, graphene quantum dot derived nanocomposite adsorbents having high adsorption rate, capacities, and efficiencies have brought about numerous revolts in the fields of adsorption towards water treatment. Future research efforts on quantum dots adsorbents may resolve the challenges of efficient water treatment for industrial applications.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"21 ","pages":"Article 100943"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene quantum dots—Nascent adsorbent nanomaterials for water treatment\",\"authors\":\"Ayesha Kausar ,&nbsp;Ishaq Ahmad\",\"doi\":\"10.1016/j.enmm.2024.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to industrial, commercial, and human activities, water pollution or contamination has become a stern environmental threat affecting all the living species. Consequently, efficient water pollution treatment technologies have been focused due to increasing global demands of clean water. Among various purification methodologies, competent adsorption processes <em>via</em> adsorbent materials have gained research interest. Graphene quantum dots are tiny spherical carbon nanoparticles having enormous technical potential owing to unique fluorescence, quantum, and electronic features. Characters of quantum dots have been further enhanced thru modification and nanocomposite formation. Accordingly, design, microstructure, robustness, and essential structural and physical features of graphene quantum dots derived nanomaterials have been foreseen in literature. This up-to-date overview highpoints the fabrication methodologies, attained features, and technical adsorption potential of graphene quantum dot, modified graphene quantum dot and resulting nanocomposites. Due to high surface area and specific physical/applied properties, graphene quantum dots have revealed fine potential towards the adsorption of hazardous water pollutants including dyes, toxic metal ions, and noxious heavy metal ions. Henceforth, graphene quantum dot derived nanocomposite adsorbents having high adsorption rate, capacities, and efficiencies have brought about numerous revolts in the fields of adsorption towards water treatment. Future research efforts on quantum dots adsorbents may resolve the challenges of efficient water treatment for industrial applications.</p></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"21 \",\"pages\":\"Article 100943\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221515322400031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221515322400031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

由于工业、商业和人类活动,水污染已成为影响所有生物的严重环境威胁。因此,由于全球对清洁水的需求日益增长,高效的水污染处理技术已成为关注的焦点。在各种净化方法中,通过吸附剂材料实现的高效吸附过程受到了研究人员的关注。石墨烯量子点是一种微小的球形碳纳米颗粒,具有独特的荧光、量子和电子特性,因此具有巨大的技术潜力。通过改性和纳米复合材料的形成,量子点的特性得到了进一步增强。因此,石墨烯量子点衍生纳米材料的设计、微观结构、坚固性以及基本结构和物理特性已在文献中有所预见。这篇最新综述高度概括了石墨烯量子点、改性石墨烯量子点及其衍生纳米复合材料的制造方法、已实现的特征和技术吸附潜力。由于石墨烯量子点具有高比表面积和特殊的物理/应用特性,它在吸附有害水污染物(包括染料、有毒金属离子和有害重金属离子)方面具有良好的潜力。因此,石墨烯量子点衍生的纳米复合吸附剂具有吸附率高、吸附容量大和吸附效率高等特点,在水处理吸附领域引起了广泛的反响。量子点吸附剂的未来研究工作可能会解决工业应用中高效水处理的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graphene quantum dots—Nascent adsorbent nanomaterials for water treatment

Graphene quantum dots—Nascent adsorbent nanomaterials for water treatment

Due to industrial, commercial, and human activities, water pollution or contamination has become a stern environmental threat affecting all the living species. Consequently, efficient water pollution treatment technologies have been focused due to increasing global demands of clean water. Among various purification methodologies, competent adsorption processes via adsorbent materials have gained research interest. Graphene quantum dots are tiny spherical carbon nanoparticles having enormous technical potential owing to unique fluorescence, quantum, and electronic features. Characters of quantum dots have been further enhanced thru modification and nanocomposite formation. Accordingly, design, microstructure, robustness, and essential structural and physical features of graphene quantum dots derived nanomaterials have been foreseen in literature. This up-to-date overview highpoints the fabrication methodologies, attained features, and technical adsorption potential of graphene quantum dot, modified graphene quantum dot and resulting nanocomposites. Due to high surface area and specific physical/applied properties, graphene quantum dots have revealed fine potential towards the adsorption of hazardous water pollutants including dyes, toxic metal ions, and noxious heavy metal ions. Henceforth, graphene quantum dot derived nanocomposite adsorbents having high adsorption rate, capacities, and efficiencies have brought about numerous revolts in the fields of adsorption towards water treatment. Future research efforts on quantum dots adsorbents may resolve the challenges of efficient water treatment for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信