微流控生物传感器中的高效电化学发光传感:综述。

Clementine Juliat Louw, Pim de Haan, Elisabeth Verpoorte, Priscilla Baker
{"title":"微流控生物传感器中的高效电化学发光传感:综述。","authors":"Clementine Juliat Louw, Pim de Haan, Elisabeth Verpoorte, Priscilla Baker","doi":"10.1615/CritRevBiomedEng.2023049565","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review.\",\"authors\":\"Clementine Juliat Louw, Pim de Haan, Elisabeth Verpoorte, Priscilla Baker\",\"doi\":\"10.1615/CritRevBiomedEng.2023049565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.</p>\",\"PeriodicalId\":94308,\"journal\":{\"name\":\"Critical reviews in biomedical engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2023049565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023049565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微流控设备可处理 10-9 升至 10-18 升的液体,其微小通道的尺寸从十几微米到几百微米不等,可使用玻璃、硅、聚合物、纸张和布料等多种材料制造,用于定制传感应用。微流控生物传感器集成了电化学发光(ECL)等检测方法,可用于疾病的诊断和预后。与 ECL 相结合,这些串联装置能够以可重复的方式检测纳摩尔到皮摩尔浓度的生物标记物。这种低浓度水平的测量使微流体电化学发光(MF-ECL)装置成为心肌梗塞、癌症等疾病早期预警系统中生物标记物检测的理想选择。然而,该技术依赖于高效发光体的性质和固有特性。发光体通常经过氧化还原过程产生激发物种,激发物种在弛豫到低能态时以光的形式释放能量。因此,在生物传感器设计中,发光体的效率至关重要。本综述的重点是微流控装置与生物传感器的整合,以及将电化学发光作为一种检测方法。我们强调了碳量子点作为发光体和共反应物在电化学发光分析中的双重作用,利用了其独特的性能,包括大比表面积、易官能化和独特的发光特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review.

Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信