快速量化少量生物样本中的 50 种脂肪酸,用于群体分子表型分析。

Pinghui Liu, Qinsheng Chen, Lianglong Zhang, Chengcheng Ren, Biru Shi, Jingxian Zhang, Shuaiyao Wang, Ziliang Chen, Qi Wang, Hui Xie, Qingxia Huang, Huiru Tang
{"title":"快速量化少量生物样本中的 50 种脂肪酸,用于群体分子表型分析。","authors":"Pinghui Liu, Qinsheng Chen, Lianglong Zhang, Chengcheng Ren, Biru Shi, Jingxian Zhang, Shuaiyao Wang, Ziliang Chen, Qi Wang, Hui Xie, Qingxia Huang, Huiru Tang","doi":"10.52601/bpr.2023.230042","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient quantification of fatty-acid (FA) composition (fatty-acidome) in biological samples is crucial for understanding physiology and pathophysiology in large population cohorts. Here, we report a rapid GC-FID/MS method for simultaneous quantification of all FAs in numerous biological matrices. Within eight minutes, this method enabled simultaneous quantification of 50 FAs as fatty-acid methyl esters (FAMEs) in femtomole levels following the efficient transformation of FAs in all lipids including FFAs, cholesterol-esters, glycerides, phospholipids and sphingolipids. The method showed satisfactory inter-day and intra-day precision, stability and linearity (R<sup>2</sup> > 0.994) within a concentration range of 2-3 orders of magnitude. FAs were then quantified in typical multiple biological matrices including human biofluids (urine, plasma) and cells, animal intestinal content and tissue samples. We also established a quantitative structure-retention relationship (QSRR) for analytes to accurately predict their retention time and aid their reliable identification. We further developed a novel no-additive retention index (NARI) with endogenous FAMEs reducing inter-batch variations to 15 seconds; such NARI performed better than the alkanes-based classical RI, making meta-analysis possible for data obtained from different batches and platforms. Collectively, this provides an inexpensive high-throughput analytical system for quantitative phenotyping of all FAs in 8-minutes multiple biological matrices in large cohort studies of pathophysiological effects.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"9 6","pages":"299-308"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid quantification of 50 fatty acids in small amounts of biological samples for population molecular phenotyping.\",\"authors\":\"Pinghui Liu, Qinsheng Chen, Lianglong Zhang, Chengcheng Ren, Biru Shi, Jingxian Zhang, Shuaiyao Wang, Ziliang Chen, Qi Wang, Hui Xie, Qingxia Huang, Huiru Tang\",\"doi\":\"10.52601/bpr.2023.230042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient quantification of fatty-acid (FA) composition (fatty-acidome) in biological samples is crucial for understanding physiology and pathophysiology in large population cohorts. Here, we report a rapid GC-FID/MS method for simultaneous quantification of all FAs in numerous biological matrices. Within eight minutes, this method enabled simultaneous quantification of 50 FAs as fatty-acid methyl esters (FAMEs) in femtomole levels following the efficient transformation of FAs in all lipids including FFAs, cholesterol-esters, glycerides, phospholipids and sphingolipids. The method showed satisfactory inter-day and intra-day precision, stability and linearity (R<sup>2</sup> > 0.994) within a concentration range of 2-3 orders of magnitude. FAs were then quantified in typical multiple biological matrices including human biofluids (urine, plasma) and cells, animal intestinal content and tissue samples. We also established a quantitative structure-retention relationship (QSRR) for analytes to accurately predict their retention time and aid their reliable identification. We further developed a novel no-additive retention index (NARI) with endogenous FAMEs reducing inter-batch variations to 15 seconds; such NARI performed better than the alkanes-based classical RI, making meta-analysis possible for data obtained from different batches and platforms. Collectively, this provides an inexpensive high-throughput analytical system for quantitative phenotyping of all FAs in 8-minutes multiple biological matrices in large cohort studies of pathophysiological effects.</p>\",\"PeriodicalId\":93906,\"journal\":{\"name\":\"Biophysics reports\",\"volume\":\"9 6\",\"pages\":\"299-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2023.230042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2023.230042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效量化生物样本中的脂肪酸(FA)组成(脂肪组)对于了解大量人群的生理学和病理生理学至关重要。在此,我们报告了一种快速 GC-FID/MS 方法,用于同时定量多种生物基质中的所有脂肪酸。该方法能在八分钟内同时定量分析 50 种脂肪酸甲酯(FAMEs)的飞摩尔含量,这些脂肪酸甲酯是在包括脂肪酸、胆固醇酯、甘油酯、磷脂和鞘脂在内的所有脂类中高效转化而来的。在 2-3 个数量级的浓度范围内,该方法显示出令人满意的日间和日内精确度、稳定性和线性(R2 > 0.994)。随后,我们对典型的多种生物基质(包括人体生物流体(尿液、血浆)和细胞、动物肠道内容物和组织样本)中的 FAs 进行了定量。我们还建立了分析物的定量结构-保留关系 (QSRR),以准确预测其保留时间,帮助可靠地识别它们。我们进一步开发了一种新型的无添加保留指数(NARI),利用内源性 FAMEs 将批次间的差异减少到 15 秒;这种 NARI 比基于烷烃的经典保留指数性能更好,从而可以对来自不同批次和平台的数据进行荟萃分析。总之,这提供了一种廉价的高通量分析系统,可在 8 分钟内对病理生理效应的大型队列研究中的多种生物基质中的所有 FAs 进行定量表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid quantification of 50 fatty acids in small amounts of biological samples for population molecular phenotyping.

Efficient quantification of fatty-acid (FA) composition (fatty-acidome) in biological samples is crucial for understanding physiology and pathophysiology in large population cohorts. Here, we report a rapid GC-FID/MS method for simultaneous quantification of all FAs in numerous biological matrices. Within eight minutes, this method enabled simultaneous quantification of 50 FAs as fatty-acid methyl esters (FAMEs) in femtomole levels following the efficient transformation of FAs in all lipids including FFAs, cholesterol-esters, glycerides, phospholipids and sphingolipids. The method showed satisfactory inter-day and intra-day precision, stability and linearity (R2 > 0.994) within a concentration range of 2-3 orders of magnitude. FAs were then quantified in typical multiple biological matrices including human biofluids (urine, plasma) and cells, animal intestinal content and tissue samples. We also established a quantitative structure-retention relationship (QSRR) for analytes to accurately predict their retention time and aid their reliable identification. We further developed a novel no-additive retention index (NARI) with endogenous FAMEs reducing inter-batch variations to 15 seconds; such NARI performed better than the alkanes-based classical RI, making meta-analysis possible for data obtained from different batches and platforms. Collectively, this provides an inexpensive high-throughput analytical system for quantitative phenotyping of all FAs in 8-minutes multiple biological matrices in large cohort studies of pathophysiological effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信