Xuguang Cao, Kefeng Fan, Cun Xu, Huilin Ma, Kaijie Jiao
{"title":"CMNet:基于双分支结构的结肠息肉分割深度学习模型。","authors":"Xuguang Cao, Kefeng Fan, Cun Xu, Huilin Ma, Kaijie Jiao","doi":"10.1117/1.JMI.11.2.024004","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Colon cancer is one of the top three diseases in gastrointestinal cancers, and colon polyps are an important trigger of colon cancer. Early diagnosis and removal of colon polyps can avoid the incidence of colon cancer. Currently, colon polyp removal surgery is mainly based on artificial-intelligence (AI) colonoscopy, supplemented by deep-learning technology to help doctors remove colon polyps. With the development of deep learning, the use of advanced AI technology to assist in medical diagnosis has become mainstream and can maximize the doctor's diagnostic time and help doctors to better formulate medical plans.</p><p><strong>Approach: </strong>We propose a deep-learning model for segmenting colon polyps. The model adopts a dual-branch structure, combines a convolutional neural network (CNN) with a transformer, and replaces ordinary convolution with deeply separable convolution based on ResNet; a stripe pooling module is introduced to obtain more effective information. The aggregated attention module (AAM) is proposed for high-dimensional semantic information, which effectively combines two different structures for the high-dimensional information fusion problem. Deep supervision and multi-scale training are added in the model training process to enhance the learning effect and generalization performance of the model.</p><p><strong>Results: </strong>The experimental results show that the proposed dual-branch structure is significantly better than the single-branch structure, and the model using the AAM has a significant performance improvement over the model not using the AAM. Our model leads 1.1% and 1.5% in mIoU and mDice, respectively, when compared with state-of-the-art models in a fivefold cross-validation on the Kvasir-SEG dataset.</p><p><strong>Conclusions: </strong>We propose and validate a deep learning model for segmenting colon polyps, using a dual-branch network structure. Our results demonstrate the feasibility of complementing traditional CNNs and transformer with each other. And we verified the feasibility of fusing different structures on high-dimensional semantics and successfully retained the high-dimensional information of different structures effectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960180/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMNet: deep learning model for colon polyp segmentation based on dual-branch structure.\",\"authors\":\"Xuguang Cao, Kefeng Fan, Cun Xu, Huilin Ma, Kaijie Jiao\",\"doi\":\"10.1117/1.JMI.11.2.024004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Colon cancer is one of the top three diseases in gastrointestinal cancers, and colon polyps are an important trigger of colon cancer. Early diagnosis and removal of colon polyps can avoid the incidence of colon cancer. Currently, colon polyp removal surgery is mainly based on artificial-intelligence (AI) colonoscopy, supplemented by deep-learning technology to help doctors remove colon polyps. With the development of deep learning, the use of advanced AI technology to assist in medical diagnosis has become mainstream and can maximize the doctor's diagnostic time and help doctors to better formulate medical plans.</p><p><strong>Approach: </strong>We propose a deep-learning model for segmenting colon polyps. The model adopts a dual-branch structure, combines a convolutional neural network (CNN) with a transformer, and replaces ordinary convolution with deeply separable convolution based on ResNet; a stripe pooling module is introduced to obtain more effective information. The aggregated attention module (AAM) is proposed for high-dimensional semantic information, which effectively combines two different structures for the high-dimensional information fusion problem. Deep supervision and multi-scale training are added in the model training process to enhance the learning effect and generalization performance of the model.</p><p><strong>Results: </strong>The experimental results show that the proposed dual-branch structure is significantly better than the single-branch structure, and the model using the AAM has a significant performance improvement over the model not using the AAM. Our model leads 1.1% and 1.5% in mIoU and mDice, respectively, when compared with state-of-the-art models in a fivefold cross-validation on the Kvasir-SEG dataset.</p><p><strong>Conclusions: </strong>We propose and validate a deep learning model for segmenting colon polyps, using a dual-branch network structure. Our results demonstrate the feasibility of complementing traditional CNNs and transformer with each other. And we verified the feasibility of fusing different structures on high-dimensional semantics and successfully retained the high-dimensional information of different structures effectively.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960180/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.2.024004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CMNet: deep learning model for colon polyp segmentation based on dual-branch structure.
Purpose: Colon cancer is one of the top three diseases in gastrointestinal cancers, and colon polyps are an important trigger of colon cancer. Early diagnosis and removal of colon polyps can avoid the incidence of colon cancer. Currently, colon polyp removal surgery is mainly based on artificial-intelligence (AI) colonoscopy, supplemented by deep-learning technology to help doctors remove colon polyps. With the development of deep learning, the use of advanced AI technology to assist in medical diagnosis has become mainstream and can maximize the doctor's diagnostic time and help doctors to better formulate medical plans.
Approach: We propose a deep-learning model for segmenting colon polyps. The model adopts a dual-branch structure, combines a convolutional neural network (CNN) with a transformer, and replaces ordinary convolution with deeply separable convolution based on ResNet; a stripe pooling module is introduced to obtain more effective information. The aggregated attention module (AAM) is proposed for high-dimensional semantic information, which effectively combines two different structures for the high-dimensional information fusion problem. Deep supervision and multi-scale training are added in the model training process to enhance the learning effect and generalization performance of the model.
Results: The experimental results show that the proposed dual-branch structure is significantly better than the single-branch structure, and the model using the AAM has a significant performance improvement over the model not using the AAM. Our model leads 1.1% and 1.5% in mIoU and mDice, respectively, when compared with state-of-the-art models in a fivefold cross-validation on the Kvasir-SEG dataset.
Conclusions: We propose and validate a deep learning model for segmenting colon polyps, using a dual-branch network structure. Our results demonstrate the feasibility of complementing traditional CNNs and transformer with each other. And we verified the feasibility of fusing different structures on high-dimensional semantics and successfully retained the high-dimensional information of different structures effectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.