从蒙古大戈壁 A 级严格保护区分离的节杆菌菌株的抗菌活性。

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2024-02-28 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024009
Alberto Bernacchi, Giulia Semenzato, Manuel di Mascolo, Sara Amata, Angela Bechini, Fabiola Berti, Carmela Calonico, Valentina Catania, Giovanni Emiliani, Antonia Esposito, Claudia Greco, Stefano Mocali, Nadia Mucci, Anna Padula, Antonio Palumbo Piccionello, Battogtokh Nasanbat, Gantulga Davaakhuu, Munkhtsetseg Bazarragchaa, Francesco Riga, Claudio Augugliaro, Anna Maria Puglia, Marco Zaccaroni, Fani Renato
{"title":"从蒙古大戈壁 A 级严格保护区分离的节杆菌菌株的抗菌活性。","authors":"Alberto Bernacchi, Giulia Semenzato, Manuel di Mascolo, Sara Amata, Angela Bechini, Fabiola Berti, Carmela Calonico, Valentina Catania, Giovanni Emiliani, Antonia Esposito, Claudia Greco, Stefano Mocali, Nadia Mucci, Anna Padula, Antonio Palumbo Piccionello, Battogtokh Nasanbat, Gantulga Davaakhuu, Munkhtsetseg Bazarragchaa, Francesco Riga, Claudio Augugliaro, Anna Maria Puglia, Marco Zaccaroni, Fani Renato","doi":"10.3934/microbiol.2024009","DOIUrl":null,"url":null,"abstract":"<p><p>Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 <i>Arthrobacter</i> strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar <i>Arthrobacter</i> sequences found in databases, revealed that most of them were close to <i>A. crystallopoietes</i>, while others joined a sister group to the clade formed by <i>A. humicola, A. pascens</i>, and <i>A. oryzae</i>. The resistance of each strain to different antibiotics, heavy-metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., <i>Burkholderia</i> ssp., <i>Klebsiella pneumoniae, Pseudomonas aeruginosa</i>, and <i>Staphylococcus</i> ssp.) via cross-streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 <i>Arthrobacter</i> strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Gram-positive and Gram-negative bacteria. Isolate MS-3A13, producing the highest quantity of VOCs, is the most efficient against <i>Burkholderia cepacia</i> complex (Bcc), <i>K. pneumoniae</i>, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 1","pages":"161-186"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibacterial activity of <i>Arthrobacter</i> strains isolated from Great Gobi A Strictly Protected Area, Mongolia.\",\"authors\":\"Alberto Bernacchi, Giulia Semenzato, Manuel di Mascolo, Sara Amata, Angela Bechini, Fabiola Berti, Carmela Calonico, Valentina Catania, Giovanni Emiliani, Antonia Esposito, Claudia Greco, Stefano Mocali, Nadia Mucci, Anna Padula, Antonio Palumbo Piccionello, Battogtokh Nasanbat, Gantulga Davaakhuu, Munkhtsetseg Bazarragchaa, Francesco Riga, Claudio Augugliaro, Anna Maria Puglia, Marco Zaccaroni, Fani Renato\",\"doi\":\"10.3934/microbiol.2024009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 <i>Arthrobacter</i> strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar <i>Arthrobacter</i> sequences found in databases, revealed that most of them were close to <i>A. crystallopoietes</i>, while others joined a sister group to the clade formed by <i>A. humicola, A. pascens</i>, and <i>A. oryzae</i>. The resistance of each strain to different antibiotics, heavy-metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., <i>Burkholderia</i> ssp., <i>Klebsiella pneumoniae, Pseudomonas aeruginosa</i>, and <i>Staphylococcus</i> ssp.) via cross-streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 <i>Arthrobacter</i> strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Gram-positive and Gram-negative bacteria. Isolate MS-3A13, producing the highest quantity of VOCs, is the most efficient against <i>Burkholderia cepacia</i> complex (Bcc), <i>K. pneumoniae</i>, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains.</p>\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"10 1\",\"pages\":\"161-186\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2024009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

沙漠土壤中有许多微生物,从生态学的角度来看,它们的活动至关重要。此外,它们对人类也具有重大意义。对极端环境微生物组的了解可能对农业、科技和人类健康有益。在这项研究中,研究人员采用不同的技术对从戈壁滩大戈壁A级严格保护区采集的表层土样本中的11株节肢动物细菌进行了鉴定。利用这些菌株的 16S rDNA 序列和数据库中最相似的节杆菌序列进行的系统进化分析表明,其中大部分菌株与结晶节杆菌很接近,而其他菌株则加入了由腐生节杆菌、帕氏节杆菌和oryzae 节杆菌组成的姊妹群。此外,还测试了每种菌株对不同抗生素、重金属和氯化钠的抗性,以及通过交叉震荡对人类病原体(即伯克氏菌、肺炎克雷伯氏菌、铜绿假单胞菌和葡萄球菌)的抑制潜力,以检查具有抗菌活性的代谢物的产生情况。获得的数据显示,所有菌株都对重金属具有抗性,并能强烈干扰许多受测人类病原体的生长。此外,还对 11 株节肢动物杆菌的挥发性有机化合物(VOCs)概况进行了分析。共发现了 16 种不同的代谢物,其中一些对不同的革兰氏阳性菌和革兰氏阴性菌具有抑制作用。菌株 MS-3A13 产生的挥发性有机化合物数量最多,对伯克霍尔德氏头孢菌素复合体(Bcc)、肺炎克氏菌和凝固酶阴性葡萄球菌(CoNS)菌株的抑制作用最强。这项工作凸显了了解极端环境中微生物种群的表型特征和动态以发现新物种和新菌株的抗菌潜力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibacterial activity of Arthrobacter strains isolated from Great Gobi A Strictly Protected Area, Mongolia.

Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 Arthrobacter strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar Arthrobacter sequences found in databases, revealed that most of them were close to A. crystallopoietes, while others joined a sister group to the clade formed by A. humicola, A. pascens, and A. oryzae. The resistance of each strain to different antibiotics, heavy-metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., Burkholderia ssp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus ssp.) via cross-streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 Arthrobacter strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Gram-positive and Gram-negative bacteria. Isolate MS-3A13, producing the highest quantity of VOCs, is the most efficient against Burkholderia cepacia complex (Bcc), K. pneumoniae, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信