Uttam Kumar, Kalpana Dhanik, Mrutyunjaya Mishra, Himanshu R Pandey, Amit Keshri
{"title":"绘制聋人在图片、文字和手语处理过程中的独特神经参与图:fMRI 研究。","authors":"Uttam Kumar, Kalpana Dhanik, Mrutyunjaya Mishra, Himanshu R Pandey, Amit Keshri","doi":"10.1007/s11682-024-00878-7","DOIUrl":null,"url":null,"abstract":"<p><p>Employing functional magnetic resonance imaging (fMRI) techniques, we conducted a comprehensive analysis of neural responses during sign language, picture, and word processing tasks in a cohort of 35 deaf participants and contrasted these responses with those of 35 hearing counterparts. Our voxel-based analysis unveiled distinct patterns of brain activation during language processing tasks. Deaf individuals exhibited robust bilateral activation in the superior temporal regions during sign language processing, signifying the profound neural adaptations associated with sign comprehension. Similarly, during picture processing, the deaf cohort displayed activation in the right angular, right calcarine, right middle temporal, and left angular gyrus regions, elucidating the neural dynamics engaged in visual processing tasks. Intriguingly, during word processing, the deaf group engaged the right insula and right fusiform gyrus, suggesting compensatory mechanisms at play during linguistic tasks. Notably, the control group failed to manifest additional or distinctive regions in any of the tasks when compared to the deaf cohort, underscoring the unique neural signatures within the deaf population. Multivariate Pattern Analysis (MVPA) of functional connectivity provided a more nuanced perspective on connectivity patterns across tasks. Deaf participants exhibited significant activation in a myriad of brain regions, including bilateral planum temporale (PT), postcentral gyrus, insula, and inferior frontal regions, among others. These findings underscore the intricate neural adaptations in response to auditory deprivation. Seed-based connectivity analysis, utilizing the PT as a seed region, revealed unique connectivity pattern across tasks. These connectivity dynamics provide valuable insights into the neural interplay associated with cross-modal plasticity.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"835-851"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the unique neural engagement in deaf individuals during picture, word, and sign language processing: fMRI study.\",\"authors\":\"Uttam Kumar, Kalpana Dhanik, Mrutyunjaya Mishra, Himanshu R Pandey, Amit Keshri\",\"doi\":\"10.1007/s11682-024-00878-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Employing functional magnetic resonance imaging (fMRI) techniques, we conducted a comprehensive analysis of neural responses during sign language, picture, and word processing tasks in a cohort of 35 deaf participants and contrasted these responses with those of 35 hearing counterparts. Our voxel-based analysis unveiled distinct patterns of brain activation during language processing tasks. Deaf individuals exhibited robust bilateral activation in the superior temporal regions during sign language processing, signifying the profound neural adaptations associated with sign comprehension. Similarly, during picture processing, the deaf cohort displayed activation in the right angular, right calcarine, right middle temporal, and left angular gyrus regions, elucidating the neural dynamics engaged in visual processing tasks. Intriguingly, during word processing, the deaf group engaged the right insula and right fusiform gyrus, suggesting compensatory mechanisms at play during linguistic tasks. Notably, the control group failed to manifest additional or distinctive regions in any of the tasks when compared to the deaf cohort, underscoring the unique neural signatures within the deaf population. Multivariate Pattern Analysis (MVPA) of functional connectivity provided a more nuanced perspective on connectivity patterns across tasks. Deaf participants exhibited significant activation in a myriad of brain regions, including bilateral planum temporale (PT), postcentral gyrus, insula, and inferior frontal regions, among others. These findings underscore the intricate neural adaptations in response to auditory deprivation. Seed-based connectivity analysis, utilizing the PT as a seed region, revealed unique connectivity pattern across tasks. These connectivity dynamics provide valuable insights into the neural interplay associated with cross-modal plasticity.</p>\",\"PeriodicalId\":9192,\"journal\":{\"name\":\"Brain Imaging and Behavior\",\"volume\":\" \",\"pages\":\"835-851\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Imaging and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11682-024-00878-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00878-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Mapping the unique neural engagement in deaf individuals during picture, word, and sign language processing: fMRI study.
Employing functional magnetic resonance imaging (fMRI) techniques, we conducted a comprehensive analysis of neural responses during sign language, picture, and word processing tasks in a cohort of 35 deaf participants and contrasted these responses with those of 35 hearing counterparts. Our voxel-based analysis unveiled distinct patterns of brain activation during language processing tasks. Deaf individuals exhibited robust bilateral activation in the superior temporal regions during sign language processing, signifying the profound neural adaptations associated with sign comprehension. Similarly, during picture processing, the deaf cohort displayed activation in the right angular, right calcarine, right middle temporal, and left angular gyrus regions, elucidating the neural dynamics engaged in visual processing tasks. Intriguingly, during word processing, the deaf group engaged the right insula and right fusiform gyrus, suggesting compensatory mechanisms at play during linguistic tasks. Notably, the control group failed to manifest additional or distinctive regions in any of the tasks when compared to the deaf cohort, underscoring the unique neural signatures within the deaf population. Multivariate Pattern Analysis (MVPA) of functional connectivity provided a more nuanced perspective on connectivity patterns across tasks. Deaf participants exhibited significant activation in a myriad of brain regions, including bilateral planum temporale (PT), postcentral gyrus, insula, and inferior frontal regions, among others. These findings underscore the intricate neural adaptations in response to auditory deprivation. Seed-based connectivity analysis, utilizing the PT as a seed region, revealed unique connectivity pattern across tasks. These connectivity dynamics provide valuable insights into the neural interplay associated with cross-modal plasticity.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.