{"title":"有限约束 (LB) 对完整岩石峰值和残余强度影响的实验研究","authors":"Sonu, Shailendra Chawla, Ashok Jaiswal","doi":"10.1007/s42461-024-00963-x","DOIUrl":null,"url":null,"abstract":"<p>Side spalling/skin failure occurs due to the high-induced stress in underground structures. In such cases, rock bolting or other support systems are being used to control the skin failure or spalling of the pillar. The nature of these support systems is passive, which acts during the deformation. These support systems restrict the displacement considerably of the side/or roof surface of the excavation. Ultimately, it improves the stability of the structure because of the increment in residual strength of rock mass. It is noted that these passive support systems give very low confinement in the range of 0–0.015 MPa at the onset of failure. As the level of confinement will be very low and dependent with progress of failure, triaxial test was not found practically suitable. Thus, an alternative procedure of testing has been proposed. In the procedure, sides of sample have been restricted little bit by using adhesive tape. It provides the limited boundness on the lateral direction (LBLD) of rock specimen. The uniaxial compression strength (<i>UCS</i>) test has been performed on 30 numbers of cylindrical rock specimens using the servo-controlled stiff testing machine. Specifically, two rock types (medium-coarse–grained and coarse-grained rocks) were studied in terms of stress–strain behaviour so that a full residual strength envelope for each specimen was obtained. This study reveals that the residual strength of limited confined rock specimens has been significantly increased as compared to unconfined rock for both groups of rock types. The average residual strength of LBLD specimens of fine-grained rock and medium coarse-grained rock has been increased around 12 times, and five times as compared to unconfined rock, respectively. The average peak strength of LBLD rock specimens has been increased in the range of 30.5 to 48.6% for coarse-grained rock. The results of this study have been presented in terms of peak strength, residual strength and Young’s modulus of rock, and the post-peak failure behaviour of rock specimens was also critically analysed through a stress–strain curve.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"264 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study on Effect of Limited Boundness (LB) on Peak and Residual Strength of Intact Rock\",\"authors\":\"Sonu, Shailendra Chawla, Ashok Jaiswal\",\"doi\":\"10.1007/s42461-024-00963-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Side spalling/skin failure occurs due to the high-induced stress in underground structures. In such cases, rock bolting or other support systems are being used to control the skin failure or spalling of the pillar. The nature of these support systems is passive, which acts during the deformation. These support systems restrict the displacement considerably of the side/or roof surface of the excavation. Ultimately, it improves the stability of the structure because of the increment in residual strength of rock mass. It is noted that these passive support systems give very low confinement in the range of 0–0.015 MPa at the onset of failure. As the level of confinement will be very low and dependent with progress of failure, triaxial test was not found practically suitable. Thus, an alternative procedure of testing has been proposed. In the procedure, sides of sample have been restricted little bit by using adhesive tape. It provides the limited boundness on the lateral direction (LBLD) of rock specimen. The uniaxial compression strength (<i>UCS</i>) test has been performed on 30 numbers of cylindrical rock specimens using the servo-controlled stiff testing machine. Specifically, two rock types (medium-coarse–grained and coarse-grained rocks) were studied in terms of stress–strain behaviour so that a full residual strength envelope for each specimen was obtained. This study reveals that the residual strength of limited confined rock specimens has been significantly increased as compared to unconfined rock for both groups of rock types. The average residual strength of LBLD specimens of fine-grained rock and medium coarse-grained rock has been increased around 12 times, and five times as compared to unconfined rock, respectively. The average peak strength of LBLD rock specimens has been increased in the range of 30.5 to 48.6% for coarse-grained rock. The results of this study have been presented in terms of peak strength, residual strength and Young’s modulus of rock, and the post-peak failure behaviour of rock specimens was also critically analysed through a stress–strain curve.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"264 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00963-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00963-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
An Experimental Study on Effect of Limited Boundness (LB) on Peak and Residual Strength of Intact Rock
Side spalling/skin failure occurs due to the high-induced stress in underground structures. In such cases, rock bolting or other support systems are being used to control the skin failure or spalling of the pillar. The nature of these support systems is passive, which acts during the deformation. These support systems restrict the displacement considerably of the side/or roof surface of the excavation. Ultimately, it improves the stability of the structure because of the increment in residual strength of rock mass. It is noted that these passive support systems give very low confinement in the range of 0–0.015 MPa at the onset of failure. As the level of confinement will be very low and dependent with progress of failure, triaxial test was not found practically suitable. Thus, an alternative procedure of testing has been proposed. In the procedure, sides of sample have been restricted little bit by using adhesive tape. It provides the limited boundness on the lateral direction (LBLD) of rock specimen. The uniaxial compression strength (UCS) test has been performed on 30 numbers of cylindrical rock specimens using the servo-controlled stiff testing machine. Specifically, two rock types (medium-coarse–grained and coarse-grained rocks) were studied in terms of stress–strain behaviour so that a full residual strength envelope for each specimen was obtained. This study reveals that the residual strength of limited confined rock specimens has been significantly increased as compared to unconfined rock for both groups of rock types. The average residual strength of LBLD specimens of fine-grained rock and medium coarse-grained rock has been increased around 12 times, and five times as compared to unconfined rock, respectively. The average peak strength of LBLD rock specimens has been increased in the range of 30.5 to 48.6% for coarse-grained rock. The results of this study have been presented in terms of peak strength, residual strength and Young’s modulus of rock, and the post-peak failure behaviour of rock specimens was also critically analysed through a stress–strain curve.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.