Guohan Jiang, Tianzhen Wang, Dingding Yang, Jingyi You
{"title":"用于潮汐流涡轮机转子图像数据集数据增强的基于域变量先验的多类型传输网络","authors":"Guohan Jiang, Tianzhen Wang, Dingding Yang, Jingyi You","doi":"10.1142/s021800142454003x","DOIUrl":null,"url":null,"abstract":"<p>The style of the underwater images varies according to the region of the sea. However, Tidal Stream Turbine (TST) rotor images captured in the laboratory environment cannot reflect the real underwater environment in image style, resulting in poor generalization of image signal-based fault detection algorithms. Due to the fixed capture position of the camera, the TST rotor image dataset has a high semantic similarity between images, resulting in content loss in conventional image-to-image translation networks. Meanwhile, the one-to-one translation feature in other works cannot meet our requirements. In this work, a Domain Variable Prior-based Multi-style Transfer Network (DVP-MSTN) is proposed to achieve TST rotor image style augmentation. First, the backbone network is trained using a public paired dataset to acquire prior knowledge of domain variable (Knowledge Acquiring, KA). Next, a Multi-domain Transfer Unit (MDT unit) is introduced to enable the conversion of style representations in low-dimensional space. Finally, the prior knowledge is shared to train the MDT unit by fixing the parameters of the backbone network optimized from the KA process (Knowledge Sharing, KS). In addition, an algorithm based on the dark channel of the image is proposed to improve the transfer of low-contrast features. Specifically, a discriminator is used to discriminate the image dark channel to guide the MDT unit to generate low-contrast style representation conditionally. Meanwhile, color loss is employed to preserve the color feature of the image. By controlling the weights of the style code, this method enables control over the image style transfer process, thereby expanding the variety of image styles in the dataset for the purpose of data augmentation.</p>","PeriodicalId":54949,"journal":{"name":"International Journal of Pattern Recognition and Artificial Intelligence","volume":"213 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Domain Variable Prior Based Multi-Style Transfer Network for Data Augmentation of Tidal Stream Turbine Rotor Image Dataset\",\"authors\":\"Guohan Jiang, Tianzhen Wang, Dingding Yang, Jingyi You\",\"doi\":\"10.1142/s021800142454003x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The style of the underwater images varies according to the region of the sea. However, Tidal Stream Turbine (TST) rotor images captured in the laboratory environment cannot reflect the real underwater environment in image style, resulting in poor generalization of image signal-based fault detection algorithms. Due to the fixed capture position of the camera, the TST rotor image dataset has a high semantic similarity between images, resulting in content loss in conventional image-to-image translation networks. Meanwhile, the one-to-one translation feature in other works cannot meet our requirements. In this work, a Domain Variable Prior-based Multi-style Transfer Network (DVP-MSTN) is proposed to achieve TST rotor image style augmentation. First, the backbone network is trained using a public paired dataset to acquire prior knowledge of domain variable (Knowledge Acquiring, KA). Next, a Multi-domain Transfer Unit (MDT unit) is introduced to enable the conversion of style representations in low-dimensional space. Finally, the prior knowledge is shared to train the MDT unit by fixing the parameters of the backbone network optimized from the KA process (Knowledge Sharing, KS). In addition, an algorithm based on the dark channel of the image is proposed to improve the transfer of low-contrast features. Specifically, a discriminator is used to discriminate the image dark channel to guide the MDT unit to generate low-contrast style representation conditionally. Meanwhile, color loss is employed to preserve the color feature of the image. By controlling the weights of the style code, this method enables control over the image style transfer process, thereby expanding the variety of image styles in the dataset for the purpose of data augmentation.</p>\",\"PeriodicalId\":54949,\"journal\":{\"name\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s021800142454003x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pattern Recognition and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s021800142454003x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Domain Variable Prior Based Multi-Style Transfer Network for Data Augmentation of Tidal Stream Turbine Rotor Image Dataset
The style of the underwater images varies according to the region of the sea. However, Tidal Stream Turbine (TST) rotor images captured in the laboratory environment cannot reflect the real underwater environment in image style, resulting in poor generalization of image signal-based fault detection algorithms. Due to the fixed capture position of the camera, the TST rotor image dataset has a high semantic similarity between images, resulting in content loss in conventional image-to-image translation networks. Meanwhile, the one-to-one translation feature in other works cannot meet our requirements. In this work, a Domain Variable Prior-based Multi-style Transfer Network (DVP-MSTN) is proposed to achieve TST rotor image style augmentation. First, the backbone network is trained using a public paired dataset to acquire prior knowledge of domain variable (Knowledge Acquiring, KA). Next, a Multi-domain Transfer Unit (MDT unit) is introduced to enable the conversion of style representations in low-dimensional space. Finally, the prior knowledge is shared to train the MDT unit by fixing the parameters of the backbone network optimized from the KA process (Knowledge Sharing, KS). In addition, an algorithm based on the dark channel of the image is proposed to improve the transfer of low-contrast features. Specifically, a discriminator is used to discriminate the image dark channel to guide the MDT unit to generate low-contrast style representation conditionally. Meanwhile, color loss is employed to preserve the color feature of the image. By controlling the weights of the style code, this method enables control over the image style transfer process, thereby expanding the variety of image styles in the dataset for the purpose of data augmentation.
期刊介绍:
The International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) welcomes both theory-oriented and innovative applications articles on new developments and is of interest to both researchers in academia and industry.
The current scope of this journal includes:
• Pattern Recognition
• Machine Learning
• Deep Learning
• Document Analysis
• Image Processing
• Signal Processing
• Computer Vision
• Biometrics
• Biomedical Image Analysis
• Artificial Intelligence
In addition to regular papers describing original research work, survey articles on timely and important research topics are highly welcome. Special issues with focused topics within the scope of this journal are also published.