{"title":"利用合成孔径雷达数据进行基于迁移学习的局部尺度地表土壤湿度检索","authors":"Emadoddin Hemmati, Mahmod Reza Sahebi","doi":"10.1080/01431161.2024.2329529","DOIUrl":null,"url":null,"abstract":"Retrieving surface soil moisture on a local scale using Synthetic Aperture Radar (SAR) data and Deep Learning (DL) models necessitates a substantial volume of data, which may not be available in al...","PeriodicalId":14369,"journal":{"name":"International Journal of Remote Sensing","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface soil moisture retrieval based on transfer learning using SAR data on a local scale\",\"authors\":\"Emadoddin Hemmati, Mahmod Reza Sahebi\",\"doi\":\"10.1080/01431161.2024.2329529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrieving surface soil moisture on a local scale using Synthetic Aperture Radar (SAR) data and Deep Learning (DL) models necessitates a substantial volume of data, which may not be available in al...\",\"PeriodicalId\":14369,\"journal\":{\"name\":\"International Journal of Remote Sensing\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01431161.2024.2329529\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01431161.2024.2329529","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Surface soil moisture retrieval based on transfer learning using SAR data on a local scale
Retrieving surface soil moisture on a local scale using Synthetic Aperture Radar (SAR) data and Deep Learning (DL) models necessitates a substantial volume of data, which may not be available in al...
期刊介绍:
The International Journal of Remote Sensing ( IJRS) is concerned with the theory, science and technology of remote sensing and novel applications of remotely sensed data. The journal’s focus includes remote sensing of the atmosphere, biosphere, cryosphere and the terrestrial earth, as well as human modifications to the earth system. Principal topics include:
• Remotely sensed data collection, analysis, interpretation and display.
• Surveying from space, air, water and ground platforms.
• Imaging and related sensors.
• Image processing.
• Use of remotely sensed data.
• Economic surveys and cost-benefit analyses.
• Drones Section: Remote sensing with unmanned aerial systems (UASs, also known as unmanned aerial vehicles (UAVs), or drones).