S. M. Korobeynikov, V. E. Shevchenko, V. A. Loman, A. V. Ridel’
{"title":"颗粒对液体电介质导电性的影响","authors":"S. M. Korobeynikov, V. E. Shevchenko, V. A. Loman, A. V. Ridel’","doi":"10.3103/S1068375524010071","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an attempt to evaluate the effect of particles on the electrical conductivity of liquid dielectrics is made. For this purpose, a conductivity model is formulated taking into account the presence of relatively large charged microparticles in the dielectric. Based on calculations using the model, a comparative assessment of electrical conductivity was carried out. It is shown that in sufficient quantities, particles can significantly increase the electrical conductivity when forming double electric layers near their surface.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"89 - 93"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Effect of Particles on the Electrical Conductivity of Liquid Dielectrics\",\"authors\":\"S. M. Korobeynikov, V. E. Shevchenko, V. A. Loman, A. V. Ridel’\",\"doi\":\"10.3103/S1068375524010071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an attempt to evaluate the effect of particles on the electrical conductivity of liquid dielectrics is made. For this purpose, a conductivity model is formulated taking into account the presence of relatively large charged microparticles in the dielectric. Based on calculations using the model, a comparative assessment of electrical conductivity was carried out. It is shown that in sufficient quantities, particles can significantly increase the electrical conductivity when forming double electric layers near their surface.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 1\",\"pages\":\"89 - 93\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524010071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524010071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
On the Effect of Particles on the Electrical Conductivity of Liquid Dielectrics
In this paper, an attempt to evaluate the effect of particles on the electrical conductivity of liquid dielectrics is made. For this purpose, a conductivity model is formulated taking into account the presence of relatively large charged microparticles in the dielectric. Based on calculations using the model, a comparative assessment of electrical conductivity was carried out. It is shown that in sufficient quantities, particles can significantly increase the electrical conductivity when forming double electric layers near their surface.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.