Gorkem Liman, Esma Mutluturk* and Gokhan Demirel*,
{"title":"具有可逆弯曲行为的光和溶剂响应双层水凝胶致动器","authors":"Gorkem Liman, Esma Mutluturk* and Gokhan Demirel*, ","doi":"10.1021/acsmaterialsau.4c00005","DOIUrl":null,"url":null,"abstract":"<p >Light-responsive hydrogel systems have gained significant attention due to their unique ability to undergo controlled and reversible swelling behavior in response to light stimuli. Combining light-responsive hydrogels with nonresponsive polymers offers a unique self-folding feature that can be used in soft robotic actuator designs. However, simple formulation of such systems with rapid response time is still a challenging task. Herein, we demonstrate a simple but versatile bilayer polymeric design combining light-responsive spiropyran–polyacrylamide (SP-PAAm) with polyacrylamide (PAAm) hydrogels. The photochromic spiropyran in our polymer design is a closed-ring, hydrophobic compound and turns into an open-ring, hydrophilic merocyanine isomer under light irradiation. The swelling degree of SP-PAAm and PAAm hydrogels was evaluated using LED lights with different wavelengths and solvent media (e.g., water, ethanol, DMF, and DMSO). We observed that SP-PAAm hydrogels reached a swelling ratio of ∼370% with the illumination of the blue LED in the DMF medium. By combining light-responsive SP-PAAm hydrogels with nonresponsive PAAm, a proof-of-concept demonstration was performed to demonstrate the applicability of our fabricated platforms. Although fabricated one-armed bilayer hydrogels possessed self-folding ability with a folding angle of ∼40° in 30 min, the four-armed bilayer platforms demonstrated more efficient and rapid folding behavior and reached a folding angle of ∼75° in ∼15 min. Given their simplicity and efficiency, we believe that such polymeric designs may offer new avenues for the fields of polymeric actuators and soft robotic systems.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 4","pages":"385–392"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00005","citationCount":"0","resultStr":"{\"title\":\"Light- and Solvent-Responsive Bilayer Hydrogel Actuators with Reversible Bending Behaviors\",\"authors\":\"Gorkem Liman, Esma Mutluturk* and Gokhan Demirel*, \",\"doi\":\"10.1021/acsmaterialsau.4c00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Light-responsive hydrogel systems have gained significant attention due to their unique ability to undergo controlled and reversible swelling behavior in response to light stimuli. Combining light-responsive hydrogels with nonresponsive polymers offers a unique self-folding feature that can be used in soft robotic actuator designs. However, simple formulation of such systems with rapid response time is still a challenging task. Herein, we demonstrate a simple but versatile bilayer polymeric design combining light-responsive spiropyran–polyacrylamide (SP-PAAm) with polyacrylamide (PAAm) hydrogels. The photochromic spiropyran in our polymer design is a closed-ring, hydrophobic compound and turns into an open-ring, hydrophilic merocyanine isomer under light irradiation. The swelling degree of SP-PAAm and PAAm hydrogels was evaluated using LED lights with different wavelengths and solvent media (e.g., water, ethanol, DMF, and DMSO). We observed that SP-PAAm hydrogels reached a swelling ratio of ∼370% with the illumination of the blue LED in the DMF medium. By combining light-responsive SP-PAAm hydrogels with nonresponsive PAAm, a proof-of-concept demonstration was performed to demonstrate the applicability of our fabricated platforms. Although fabricated one-armed bilayer hydrogels possessed self-folding ability with a folding angle of ∼40° in 30 min, the four-armed bilayer platforms demonstrated more efficient and rapid folding behavior and reached a folding angle of ∼75° in ∼15 min. Given their simplicity and efficiency, we believe that such polymeric designs may offer new avenues for the fields of polymeric actuators and soft robotic systems.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"4 4\",\"pages\":\"385–392\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Light- and Solvent-Responsive Bilayer Hydrogel Actuators with Reversible Bending Behaviors
Light-responsive hydrogel systems have gained significant attention due to their unique ability to undergo controlled and reversible swelling behavior in response to light stimuli. Combining light-responsive hydrogels with nonresponsive polymers offers a unique self-folding feature that can be used in soft robotic actuator designs. However, simple formulation of such systems with rapid response time is still a challenging task. Herein, we demonstrate a simple but versatile bilayer polymeric design combining light-responsive spiropyran–polyacrylamide (SP-PAAm) with polyacrylamide (PAAm) hydrogels. The photochromic spiropyran in our polymer design is a closed-ring, hydrophobic compound and turns into an open-ring, hydrophilic merocyanine isomer under light irradiation. The swelling degree of SP-PAAm and PAAm hydrogels was evaluated using LED lights with different wavelengths and solvent media (e.g., water, ethanol, DMF, and DMSO). We observed that SP-PAAm hydrogels reached a swelling ratio of ∼370% with the illumination of the blue LED in the DMF medium. By combining light-responsive SP-PAAm hydrogels with nonresponsive PAAm, a proof-of-concept demonstration was performed to demonstrate the applicability of our fabricated platforms. Although fabricated one-armed bilayer hydrogels possessed self-folding ability with a folding angle of ∼40° in 30 min, the four-armed bilayer platforms demonstrated more efficient and rapid folding behavior and reached a folding angle of ∼75° in ∼15 min. Given their simplicity and efficiency, we believe that such polymeric designs may offer new avenues for the fields of polymeric actuators and soft robotic systems.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications