熔融金属导电电流处理多变量法

IF 0.9 Q3 Engineering
V. N. Tsurkin, A. V. Ivanov, Yu. M. Zaporozhets, A. A. Zhdanov, N. V. Chestnykh
{"title":"熔融金属导电电流处理多变量法","authors":"V. N. Tsurkin,&nbsp;A. V. Ivanov,&nbsp;Yu. M. Zaporozhets,&nbsp;A. A. Zhdanov,&nbsp;N. V. Chestnykh","doi":"10.3103/S1068375524010150","DOIUrl":null,"url":null,"abstract":"<p>The prospects of utilizing electric current treatment of molten metal simultaneously with multiple types of current in foundry production were studied. This principle in combination with various designs of electrode systems allows the formation of a multivariant topology of the electromagnetic field in the molten metal, qualitatively and quantitatively shaping differently the thermomechanical load on the melt. Conditions for improving the performance of the cast metal were found. Simulation modeling methods identified treatment options capable of actively improving the incubation processes of crystallization. The results of simulation modeling were experimentally confirmed. It was determined that simultaneous treatment with two types of current at energy consumption three times lower than that in treatment with a single current source increases the tensile strength by 13% and the relative elongation by a factor of 1.5. The relative narrowing of the specimen was 4.4%, which cannot be achieved for an alloy in the Al–Si system by other treatment methods. The eutectic structure was modified, and α-Al grains acquired a rounded shape.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"31 - 41"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariant Method of Conductive Electric Current Treatment of Molten Metal\",\"authors\":\"V. N. Tsurkin,&nbsp;A. V. Ivanov,&nbsp;Yu. M. Zaporozhets,&nbsp;A. A. Zhdanov,&nbsp;N. V. Chestnykh\",\"doi\":\"10.3103/S1068375524010150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prospects of utilizing electric current treatment of molten metal simultaneously with multiple types of current in foundry production were studied. This principle in combination with various designs of electrode systems allows the formation of a multivariant topology of the electromagnetic field in the molten metal, qualitatively and quantitatively shaping differently the thermomechanical load on the melt. Conditions for improving the performance of the cast metal were found. Simulation modeling methods identified treatment options capable of actively improving the incubation processes of crystallization. The results of simulation modeling were experimentally confirmed. It was determined that simultaneous treatment with two types of current at energy consumption three times lower than that in treatment with a single current source increases the tensile strength by 13% and the relative elongation by a factor of 1.5. The relative narrowing of the specimen was 4.4%, which cannot be achieved for an alloy in the Al–Si system by other treatment methods. The eutectic structure was modified, and α-Al grains acquired a rounded shape.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 1\",\"pages\":\"31 - 41\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524010150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524010150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了在铸造生产中利用多种电流同时对熔融金属进行电流处理的前景。该原理与各种电极系统设计相结合,可在熔融金属中形成多变的电磁场拓扑结构,从而定性和定量地改变熔体的热机械负荷。找到了提高铸造金属性能的条件。模拟建模方法确定了能够积极改善结晶孵化过程的处理方案。实验证实了模拟建模的结果。结果表明,同时使用两种电流进行处理的能耗比使用单一电流源处理的能耗低三倍,抗拉强度提高了 13%,相对伸长率提高了 1.5 倍。试样的相对窄度为 4.4%,这是其他处理方法无法实现的。共晶结构发生了改变,α-Al 晶粒呈现圆形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivariant Method of Conductive Electric Current Treatment of Molten Metal

Multivariant Method of Conductive Electric Current Treatment of Molten Metal

Multivariant Method of Conductive Electric Current Treatment of Molten Metal

The prospects of utilizing electric current treatment of molten metal simultaneously with multiple types of current in foundry production were studied. This principle in combination with various designs of electrode systems allows the formation of a multivariant topology of the electromagnetic field in the molten metal, qualitatively and quantitatively shaping differently the thermomechanical load on the melt. Conditions for improving the performance of the cast metal were found. Simulation modeling methods identified treatment options capable of actively improving the incubation processes of crystallization. The results of simulation modeling were experimentally confirmed. It was determined that simultaneous treatment with two types of current at energy consumption three times lower than that in treatment with a single current source increases the tensile strength by 13% and the relative elongation by a factor of 1.5. The relative narrowing of the specimen was 4.4%, which cannot be achieved for an alloy in the Al–Si system by other treatment methods. The eutectic structure was modified, and α-Al grains acquired a rounded shape.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信