具有负扩散性的反应-扩散方程的冲击前解析解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thomas Miller, Alexander K. Y. Tam, Robert Marangell, Martin Wechselberger, Bronwyn H. Bradshaw-Hajek
{"title":"具有负扩散性的反应-扩散方程的冲击前解析解","authors":"Thomas Miller,&nbsp;Alexander K. Y. Tam,&nbsp;Robert Marangell,&nbsp;Martin Wechselberger,&nbsp;Bronwyn H. Bradshaw-Hajek","doi":"10.1111/sapm.12685","DOIUrl":null,"url":null,"abstract":"<p>Reaction–diffusion equations (RDEs) model the spatiotemporal evolution of a density field <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$u({x},t)$</annotation>\n </semantics></math> according to diffusion and net local changes. Usually, the diffusivity is positive for all values of <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math>, which causes the density to disperse. However, RDEs with partially negative diffusivity can model aggregation, which is the preferred behavior in some circumstances. In this paper, we consider a nonlinear RDE with quadratic diffusivity <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mi>u</mi>\n <mo>−</mo>\n <mi>a</mi>\n <mo>)</mo>\n <mo>(</mo>\n <mi>u</mi>\n <mo>−</mo>\n <mi>b</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$D(u) = (u - a)(u - b)$</annotation>\n </semantics></math> that is negative for <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$u\\in (a,b)$</annotation>\n </semantics></math>. We use a nonclassical symmetry to construct analytic receding time-dependent, colliding wave, and receding traveling wave solutions. These solutions are multivalued, and we convert them to single-valued solutions by inserting a shock. We examine properties of these analytic solutions including their Stefan-like boundary condition, and perform a phase plane analysis. We also investigate the spectral stability of the <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u = 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$u = 1$</annotation>\n </semantics></math> constant solutions, and prove for certain <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>b</mi>\n <annotation>$b$</annotation>\n </semantics></math> that receding traveling waves are spectrally stable. In addition, we introduce a new shock condition where the diffusivity and flux are continuous across the shock. For diffusivity symmetric about the midpoint of its zeros, this condition recovers the well-known equal-area rule, but for nonsymmetric diffusivity it results in a different shock position.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12685","citationCount":"0","resultStr":"{\"title\":\"Analytic shock-fronted solutions to a reaction–diffusion equation with negative diffusivity\",\"authors\":\"Thomas Miller,&nbsp;Alexander K. Y. Tam,&nbsp;Robert Marangell,&nbsp;Martin Wechselberger,&nbsp;Bronwyn H. Bradshaw-Hajek\",\"doi\":\"10.1111/sapm.12685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reaction–diffusion equations (RDEs) model the spatiotemporal evolution of a density field <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$u({x},t)$</annotation>\\n </semantics></math> according to diffusion and net local changes. Usually, the diffusivity is positive for all values of <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math>, which causes the density to disperse. However, RDEs with partially negative diffusivity can model aggregation, which is the preferred behavior in some circumstances. In this paper, we consider a nonlinear RDE with quadratic diffusivity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>−</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>−</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$D(u) = (u - a)(u - b)$</annotation>\\n </semantics></math> that is negative for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$u\\\\in (a,b)$</annotation>\\n </semantics></math>. We use a nonclassical symmetry to construct analytic receding time-dependent, colliding wave, and receding traveling wave solutions. These solutions are multivalued, and we convert them to single-valued solutions by inserting a shock. We examine properties of these analytic solutions including their Stefan-like boundary condition, and perform a phase plane analysis. We also investigate the spectral stability of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$u = 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$u = 1$</annotation>\\n </semantics></math> constant solutions, and prove for certain <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>b</mi>\\n <annotation>$b$</annotation>\\n </semantics></math> that receding traveling waves are spectrally stable. In addition, we introduce a new shock condition where the diffusivity and flux are continuous across the shock. For diffusivity symmetric about the midpoint of its zeros, this condition recovers the well-known equal-area rule, but for nonsymmetric diffusivity it results in a different shock position.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12685\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

反应-扩散方程(RDE)根据扩散和局部净变化来模拟密度场的时空演变。通常情况下,扩散率在所有Ⅴ值下都为正值,这会导致密度分散。然而,部分扩散率为负的 RDE 可以模拟聚集,这在某些情况下是首选行为。在本文中,我们考虑了一种具有二次扩散性的非线性 RDE,该扩散性在......时为负。我们利用非经典对称性来构建解析的后退时变、碰撞波和后退行波解。这些解都是多值解,我们通过插入冲击波将它们转换为单值解。我们研究了这些解析解的特性,包括它们的类斯蒂芬边界条件,并进行了相平面分析。我们还研究了恒定解的频谱稳定性,并证明了后退行波具有一定的频谱稳定性。此外,我们还引入了一种新的冲击条件,即扩散率和通量在冲击两侧是连续的。对于围绕其零点中点对称的扩散性,该条件恢复了著名的等面积规则,但对于非对称扩散性,它导致了不同的冲击位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analytic shock-fronted solutions to a reaction–diffusion equation with negative diffusivity

Analytic shock-fronted solutions to a reaction–diffusion equation with negative diffusivity

Reaction–diffusion equations (RDEs) model the spatiotemporal evolution of a density field u ( x , t ) $u({x},t)$ according to diffusion and net local changes. Usually, the diffusivity is positive for all values of u $u$ , which causes the density to disperse. However, RDEs with partially negative diffusivity can model aggregation, which is the preferred behavior in some circumstances. In this paper, we consider a nonlinear RDE with quadratic diffusivity D ( u ) = ( u a ) ( u b ) $D(u) = (u - a)(u - b)$ that is negative for u ( a , b ) $u\in (a,b)$ . We use a nonclassical symmetry to construct analytic receding time-dependent, colliding wave, and receding traveling wave solutions. These solutions are multivalued, and we convert them to single-valued solutions by inserting a shock. We examine properties of these analytic solutions including their Stefan-like boundary condition, and perform a phase plane analysis. We also investigate the spectral stability of the u = 0 $u = 0$ and u = 1 $u = 1$ constant solutions, and prove for certain a $a$ and b $b$ that receding traveling waves are spectrally stable. In addition, we introduce a new shock condition where the diffusivity and flux are continuous across the shock. For diffusivity symmetric about the midpoint of its zeros, this condition recovers the well-known equal-area rule, but for nonsymmetric diffusivity it results in a different shock position.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信