从直流电信号对熔丝制造机中的馈电电机进行 AutoML 驱动诊断

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sean Rooney, Emil Pitz, Kishore Pochiraju
{"title":"从直流电信号对熔丝制造机中的馈电电机进行 AutoML 驱动诊断","authors":"Sean Rooney, Emil Pitz, Kishore Pochiraju","doi":"10.1007/s10845-024-02332-3","DOIUrl":null,"url":null,"abstract":"<p>Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"8 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals\",\"authors\":\"Sean Rooney, Emil Pitz, Kishore Pochiraju\",\"doi\":\"10.1007/s10845-024-02332-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02332-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02332-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

与机械加工或成型相比,快速成型制造中的零件缺陷更为频繁。故障可能几个小时都不会被发现,从而浪费资源并延长工艺周期。本文介绍了一种基于机器学习的方法,用于自动感应快速成型制造设备中的起始故障。研究在熔融丝制造(FFF)三维打印机上进行,然后将相同的方法应用于数字光处理三维打印机。调查侧重于基于信号的分析,特别是步进电机的被动传感,将直流电流测量与步进电机的扭矩相关联,而不是对部件进行任何主动声学检测。被动方法用于表征 FFF 机器中馈电步进器的负载,形成的模型可识别长丝故障的早期迹象,10 倍交叉验证的准确率为 85.65%。研究结果表明,长丝断裂可在材料偏移导致缺陷前几分钟被检测到,从而有充足的时间暂停、纠正或控制打印。机器学习管道并非天马行空,而是通过自动机器学习进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals

AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals

Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信