{"title":"从直流电信号对熔丝制造机中的馈电电机进行 AutoML 驱动诊断","authors":"Sean Rooney, Emil Pitz, Kishore Pochiraju","doi":"10.1007/s10845-024-02332-3","DOIUrl":null,"url":null,"abstract":"<p>Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"8 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals\",\"authors\":\"Sean Rooney, Emil Pitz, Kishore Pochiraju\",\"doi\":\"10.1007/s10845-024-02332-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02332-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02332-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals
Part defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.