AutoRoC-DBSCAN:自动调整 DBSCAN 以检测恶意 DNS 隧道

IF 1.8 4区 计算机科学 Q3 TELECOMMUNICATIONS
Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Arnaud Oglaza, Mehdi Mounsif
{"title":"AutoRoC-DBSCAN:自动调整 DBSCAN 以检测恶意 DNS 隧道","authors":"Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Arnaud Oglaza, Mehdi Mounsif","doi":"10.1007/s12243-024-01025-5","DOIUrl":null,"url":null,"abstract":"<p>Modern attacks, such as advanced persistent threats, hide command-and-control channels inside authorized network traffic like DNS or DNS over HTTPS to infiltrate the local network and exfiltrate sensitive data. Detecting such malicious traffic using traditional techniques is cumbersome especially when the traffic encrypted like DNS over HTTPS. Unsupervised machine learning techniques, and more specifically density-based spatial clustering of applications with noise (DBSCAN), can achieve good results in detecting malicious DNS tunnels. However, DBSCAN requires manually tuning two hyperparameters, whose optimal values can differ depending on the dataset. In this article, we propose an improved algorithm called AutoRoC-DBSCAN that can automatically find the best hyperparameters. We evaluated and obtained good results on two different datasets: a dataset we created with malicious DNS tunnels and the CIRA-CIC-DoHBrw-2020 dataset with malicious DoH tunnels.</p>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoRoC-DBSCAN: automatic tuning of DBSCAN to detect malicious DNS tunnels\",\"authors\":\"Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Arnaud Oglaza, Mehdi Mounsif\",\"doi\":\"10.1007/s12243-024-01025-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern attacks, such as advanced persistent threats, hide command-and-control channels inside authorized network traffic like DNS or DNS over HTTPS to infiltrate the local network and exfiltrate sensitive data. Detecting such malicious traffic using traditional techniques is cumbersome especially when the traffic encrypted like DNS over HTTPS. Unsupervised machine learning techniques, and more specifically density-based spatial clustering of applications with noise (DBSCAN), can achieve good results in detecting malicious DNS tunnels. However, DBSCAN requires manually tuning two hyperparameters, whose optimal values can differ depending on the dataset. In this article, we propose an improved algorithm called AutoRoC-DBSCAN that can automatically find the best hyperparameters. We evaluated and obtained good results on two different datasets: a dataset we created with malicious DNS tunnels and the CIRA-CIC-DoHBrw-2020 dataset with malicious DoH tunnels.</p>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12243-024-01025-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12243-024-01025-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

高级持续性威胁等现代攻击会在 DNS 或通过 HTTPS 的 DNS 等授权网络流量中隐藏命令和控制通道,以渗透本地网络并外泄敏感数据。使用传统技术检测此类恶意流量非常麻烦,尤其是像通过 HTTPS 的 DNS 这样的加密流量。无监督机器学习技术,特别是基于密度的带噪声应用空间聚类(DBSCAN),可以在检测恶意 DNS 隧道方面取得良好效果。然而,DBSCAN 需要手动调整两个超参数,而这两个参数的最佳值可能因数据集而异。在本文中,我们提出了一种名为 AutoRoC-DBSCAN 的改进算法,它可以自动找到最佳超参数。我们在两个不同的数据集上进行了评估,并取得了良好的结果:一个是我们用恶意 DNS 隧道创建的数据集,另一个是用恶意 DoH 隧道创建的 CIRA-CIC-DoHBrw-2020 数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AutoRoC-DBSCAN: automatic tuning of DBSCAN to detect malicious DNS tunnels

AutoRoC-DBSCAN: automatic tuning of DBSCAN to detect malicious DNS tunnels

Modern attacks, such as advanced persistent threats, hide command-and-control channels inside authorized network traffic like DNS or DNS over HTTPS to infiltrate the local network and exfiltrate sensitive data. Detecting such malicious traffic using traditional techniques is cumbersome especially when the traffic encrypted like DNS over HTTPS. Unsupervised machine learning techniques, and more specifically density-based spatial clustering of applications with noise (DBSCAN), can achieve good results in detecting malicious DNS tunnels. However, DBSCAN requires manually tuning two hyperparameters, whose optimal values can differ depending on the dataset. In this article, we propose an improved algorithm called AutoRoC-DBSCAN that can automatically find the best hyperparameters. We evaluated and obtained good results on two different datasets: a dataset we created with malicious DNS tunnels and the CIRA-CIC-DoHBrw-2020 dataset with malicious DoH tunnels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Telecommunications
Annals of Telecommunications 工程技术-电信学
CiteScore
5.20
自引率
5.30%
发文量
37
审稿时长
4.5 months
期刊介绍: Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信