{"title":"利用与理想解相似的阶次偏好技术,对焦耳加热触发的高拉伸热致变色包覆纱线进行捻度相关参数优化","authors":"Yong Wang, Zihan Yuan, Mingkun Qi, Lizheng Zhang, Mingwei Li, Wei Wang, Changlong Li","doi":"10.1515/epoly-2024-0009","DOIUrl":null,"url":null,"abstract":"A scalable approach for manufacturing highly stretchable thermochromic wrapped yarns has been reported previously. Herein, the effects of twist-related technological parameters, namely, wrapping density and outer-inner twist ratio are investigated and have been optimized by technique for order preference by similarity to ideal solution (TOPSIS). The results indicate that the preparatory twist-related parameters have a remarkable effect on the spiral geometrical configuration of yarn constituents, and thus in turn influencing the final tensile and elastic properties of wrapped yarns. The wrapping density of 800 T·m<jats:sup>−1</jats:sup> and outer-inner twist ratio of 1.25 were considered as the optimal alternative using TOPSIS. Moreover, a negative relation between voltage and color-changing time of yarn spun with optimal parameters was established. It was also found that the color of yarn above elevated triggered voltages always switched from purple to pink but followed different color-changing paths. More importantly, thermochromic response of yarn is insensitive to the applied strain.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"20 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twist-related parametric optimization of Joule heating-triggered highly stretchable thermochromic wrapped yarns using technique for order preference by similarity to ideal solution\",\"authors\":\"Yong Wang, Zihan Yuan, Mingkun Qi, Lizheng Zhang, Mingwei Li, Wei Wang, Changlong Li\",\"doi\":\"10.1515/epoly-2024-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scalable approach for manufacturing highly stretchable thermochromic wrapped yarns has been reported previously. Herein, the effects of twist-related technological parameters, namely, wrapping density and outer-inner twist ratio are investigated and have been optimized by technique for order preference by similarity to ideal solution (TOPSIS). The results indicate that the preparatory twist-related parameters have a remarkable effect on the spiral geometrical configuration of yarn constituents, and thus in turn influencing the final tensile and elastic properties of wrapped yarns. The wrapping density of 800 T·m<jats:sup>−1</jats:sup> and outer-inner twist ratio of 1.25 were considered as the optimal alternative using TOPSIS. Moreover, a negative relation between voltage and color-changing time of yarn spun with optimal parameters was established. It was also found that the color of yarn above elevated triggered voltages always switched from purple to pink but followed different color-changing paths. More importantly, thermochromic response of yarn is insensitive to the applied strain.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2024-0009\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Twist-related parametric optimization of Joule heating-triggered highly stretchable thermochromic wrapped yarns using technique for order preference by similarity to ideal solution
A scalable approach for manufacturing highly stretchable thermochromic wrapped yarns has been reported previously. Herein, the effects of twist-related technological parameters, namely, wrapping density and outer-inner twist ratio are investigated and have been optimized by technique for order preference by similarity to ideal solution (TOPSIS). The results indicate that the preparatory twist-related parameters have a remarkable effect on the spiral geometrical configuration of yarn constituents, and thus in turn influencing the final tensile and elastic properties of wrapped yarns. The wrapping density of 800 T·m−1 and outer-inner twist ratio of 1.25 were considered as the optimal alternative using TOPSIS. Moreover, a negative relation between voltage and color-changing time of yarn spun with optimal parameters was established. It was also found that the color of yarn above elevated triggered voltages always switched from purple to pink but followed different color-changing paths. More importantly, thermochromic response of yarn is insensitive to the applied strain.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.