Huan Huang , Huiying Wang , Yingxiong Li , Gaoyang Li , Hengbin Zheng
{"title":"基于新型混合方法的随机结构小故障概率分析","authors":"Huan Huang , Huiying Wang , Yingxiong Li , Gaoyang Li , Hengbin Zheng","doi":"10.1016/j.probengmech.2024.103611","DOIUrl":null,"url":null,"abstract":"<div><p>The small failure probability problem of stochastic structures is investigated by using two types of surrogate models and the subset simulation method in conjunction with parallel computation. To achieve high computational efficiency, the explicit expression of dynamic responses of stochastic structures is first derived in the form based on the explicit time-domain method. Then, the small failure probability analysis of stochastic structures is efficiently carried out through the Monte Carlo simulation method utilizing explicit expressions. To avoid the repeated calculation for the coefficient matrices or vectors of the explicit expression of stochastic structures, two types of surrogate models, e.g., the backpropagation neural network model and the Kriging model, are introduced to obtain these matrices or vectors for each parameter sample of the stochastic structures. The computational cost is further reduced by using the subset simulation method to generate conditional samples which follow the rule of Metropolis-Hastings. Furthermore, in virtue of the independence of the surrogate models for each time instant and the independence of dynamic analysis for each sample, parallel computation is embedded in the proposed approach, which can fully exploit the characteristics of the proposed approach and further improve the computational efficiency of dynamic reliability analysis. Numerical examples are given to illustrate the validity of the proposed hybrid approach.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"76 ","pages":"Article 103611"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small failure probability analysis of stochastic structures based on a new hybrid approach\",\"authors\":\"Huan Huang , Huiying Wang , Yingxiong Li , Gaoyang Li , Hengbin Zheng\",\"doi\":\"10.1016/j.probengmech.2024.103611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The small failure probability problem of stochastic structures is investigated by using two types of surrogate models and the subset simulation method in conjunction with parallel computation. To achieve high computational efficiency, the explicit expression of dynamic responses of stochastic structures is first derived in the form based on the explicit time-domain method. Then, the small failure probability analysis of stochastic structures is efficiently carried out through the Monte Carlo simulation method utilizing explicit expressions. To avoid the repeated calculation for the coefficient matrices or vectors of the explicit expression of stochastic structures, two types of surrogate models, e.g., the backpropagation neural network model and the Kriging model, are introduced to obtain these matrices or vectors for each parameter sample of the stochastic structures. The computational cost is further reduced by using the subset simulation method to generate conditional samples which follow the rule of Metropolis-Hastings. Furthermore, in virtue of the independence of the surrogate models for each time instant and the independence of dynamic analysis for each sample, parallel computation is embedded in the proposed approach, which can fully exploit the characteristics of the proposed approach and further improve the computational efficiency of dynamic reliability analysis. Numerical examples are given to illustrate the validity of the proposed hybrid approach.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"76 \",\"pages\":\"Article 103611\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026689202400033X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026689202400033X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Small failure probability analysis of stochastic structures based on a new hybrid approach
The small failure probability problem of stochastic structures is investigated by using two types of surrogate models and the subset simulation method in conjunction with parallel computation. To achieve high computational efficiency, the explicit expression of dynamic responses of stochastic structures is first derived in the form based on the explicit time-domain method. Then, the small failure probability analysis of stochastic structures is efficiently carried out through the Monte Carlo simulation method utilizing explicit expressions. To avoid the repeated calculation for the coefficient matrices or vectors of the explicit expression of stochastic structures, two types of surrogate models, e.g., the backpropagation neural network model and the Kriging model, are introduced to obtain these matrices or vectors for each parameter sample of the stochastic structures. The computational cost is further reduced by using the subset simulation method to generate conditional samples which follow the rule of Metropolis-Hastings. Furthermore, in virtue of the independence of the surrogate models for each time instant and the independence of dynamic analysis for each sample, parallel computation is embedded in the proposed approach, which can fully exploit the characteristics of the proposed approach and further improve the computational efficiency of dynamic reliability analysis. Numerical examples are given to illustrate the validity of the proposed hybrid approach.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.