{"title":"高温下高强度 Q690 钢齐平端板连接的数值研究","authors":"Weiyong Wang, Siqi Li, Tian Ran","doi":"10.1007/s10694-024-01568-y","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring fire resistance of high strength steel end-plate connections is one of the key technical bases for fire resistance design and fire safety assessment of high strength steel structures. Numerical simulation and parameter analyses of high strength Q690 steel flush end-plates will contribute to a reasonable design of high strength flush end-plate connections. In this paper, a finite element model of high strength steel flush end-plate connection considering thermal creep effect was established and validated by experimental results. The thermal creep finite element model can simulate accurately heat performance, failure modes and deformations of high strength flush end-plate connections at elevated temperatures. The increase of axial compression ratio has little effect on rotation, deflection, failure time, critical temperature, and critical rotation with elevated temperatures. The increase of bending moment ratio has little effect on the development trend of rotation and deflection. Proper increase of thickness of the end-plate can improve failure time and critical rotation, and the increase range is within 7% and 36% respectively. Proper increase of diameter of bolt can improve failure time, critical temperature, and critical rotation to a certain extent, and the increase range is within 10%, 6% and 27% respectively. Proper increases of thickness of the end-plate and diameter of bolt will improve the fire resistance of flush end-plate connection.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3269 - 3294"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on High Strength Q690 Steel Flush End-Plate Connections at Elevated Temperatures\",\"authors\":\"Weiyong Wang, Siqi Li, Tian Ran\",\"doi\":\"10.1007/s10694-024-01568-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring fire resistance of high strength steel end-plate connections is one of the key technical bases for fire resistance design and fire safety assessment of high strength steel structures. Numerical simulation and parameter analyses of high strength Q690 steel flush end-plates will contribute to a reasonable design of high strength flush end-plate connections. In this paper, a finite element model of high strength steel flush end-plate connection considering thermal creep effect was established and validated by experimental results. The thermal creep finite element model can simulate accurately heat performance, failure modes and deformations of high strength flush end-plate connections at elevated temperatures. The increase of axial compression ratio has little effect on rotation, deflection, failure time, critical temperature, and critical rotation with elevated temperatures. The increase of bending moment ratio has little effect on the development trend of rotation and deflection. Proper increase of thickness of the end-plate can improve failure time and critical rotation, and the increase range is within 7% and 36% respectively. Proper increase of diameter of bolt can improve failure time, critical temperature, and critical rotation to a certain extent, and the increase range is within 10%, 6% and 27% respectively. Proper increases of thickness of the end-plate and diameter of bolt will improve the fire resistance of flush end-plate connection.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"60 5\",\"pages\":\"3269 - 3294\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-024-01568-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01568-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Study on High Strength Q690 Steel Flush End-Plate Connections at Elevated Temperatures
Exploring fire resistance of high strength steel end-plate connections is one of the key technical bases for fire resistance design and fire safety assessment of high strength steel structures. Numerical simulation and parameter analyses of high strength Q690 steel flush end-plates will contribute to a reasonable design of high strength flush end-plate connections. In this paper, a finite element model of high strength steel flush end-plate connection considering thermal creep effect was established and validated by experimental results. The thermal creep finite element model can simulate accurately heat performance, failure modes and deformations of high strength flush end-plate connections at elevated temperatures. The increase of axial compression ratio has little effect on rotation, deflection, failure time, critical temperature, and critical rotation with elevated temperatures. The increase of bending moment ratio has little effect on the development trend of rotation and deflection. Proper increase of thickness of the end-plate can improve failure time and critical rotation, and the increase range is within 7% and 36% respectively. Proper increase of diameter of bolt can improve failure time, critical temperature, and critical rotation to a certain extent, and the increase range is within 10%, 6% and 27% respectively. Proper increases of thickness of the end-plate and diameter of bolt will improve the fire resistance of flush end-plate connection.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.