利用自旋扭矩纳米振荡器通过可调谐自由层产生的奥斯特场调谐微波频率

IF 1.3 4区 物理与天体物理 Q4 PHYSICS, APPLIED
Spin Pub Date : 2024-03-16 DOI:10.1142/s2010324724500012
H. Bhoomeeswaran, D. Aravinthan, P. Sabareesan
{"title":"利用自旋扭矩纳米振荡器通过可调谐自由层产生的奥斯特场调谐微波频率","authors":"H. Bhoomeeswaran, D. Aravinthan, P. Sabareesan","doi":"10.1142/s2010324724500012","DOIUrl":null,"url":null,"abstract":"<p>The current-induced magnetization precession dynamics provoked by the spin transfer torque (STT) in a spin valve device i.e. tri-layer device (commonly spin torque nano oscillator (STNO)) is investigated numerically by solving the governing Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. In this study, we have devised an STNO device made of EuO-based ferromagnetic alloy in free and fixed magnetic layers. The copper acts as a nonmagnetic spacer. Here, we have introduced the current induced Oesterd field (CIOF), which is generated when a spin-polarized current passes through the STNO device. In the device, we have tuned the free layer angle <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>θ</mi></math></span><span></span> from <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> as an increment of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>. For every individual <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>θ</mi></math></span><span></span> ranging from <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>, the generated Oersted field’s strength can be altered by increasing the STNO device’s diameter. Henceforth, it is apparent that the frequency tunability is achieved in the device for all the values of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>θ</mi></math></span><span></span>. The frequency and power of the device depend entirely on the material’s saturation magnetization, which inherently reflects the current density and coherence of spin-polarized DC. From the results, it is apparent that for a particular <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>θ</mi></math></span><span></span>, the frequency keeps increasing with the eventual decrease in power when we increase the strength of the Oersted field from 10<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>kA/m to 50<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>kA/m. By doing so, the maximum frequency can be tuned up to 212<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GHz for <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>θ</mi><mo>=</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">oe</mtext></mstyle></mrow></msub></math></span><span></span> as 50<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>kA/m. The high frequency emitted by the device acts as a linchpin ingredient, as well as a launch pad element in much of scientific and technological point of view. It paves way for a new route in the areas such as high capacity, high precision, high density as well as the sensing applications.</p>","PeriodicalId":54319,"journal":{"name":"Spin","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunability of Microwave Frequency Using Spin Torque Nano Oscillator by the Generated Oersted Field with Tunable Free Layer\",\"authors\":\"H. Bhoomeeswaran, D. Aravinthan, P. Sabareesan\",\"doi\":\"10.1142/s2010324724500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current-induced magnetization precession dynamics provoked by the spin transfer torque (STT) in a spin valve device i.e. tri-layer device (commonly spin torque nano oscillator (STNO)) is investigated numerically by solving the governing Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. In this study, we have devised an STNO device made of EuO-based ferromagnetic alloy in free and fixed magnetic layers. The copper acts as a nonmagnetic spacer. Here, we have introduced the current induced Oesterd field (CIOF), which is generated when a spin-polarized current passes through the STNO device. In the device, we have tuned the free layer angle <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>θ</mi></math></span><span></span> from <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> as an increment of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>. For every individual <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>θ</mi></math></span><span></span> ranging from <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> to <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>, the generated Oersted field’s strength can be altered by increasing the STNO device’s diameter. Henceforth, it is apparent that the frequency tunability is achieved in the device for all the values of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>θ</mi></math></span><span></span>. The frequency and power of the device depend entirely on the material’s saturation magnetization, which inherently reflects the current density and coherence of spin-polarized DC. From the results, it is apparent that for a particular <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>θ</mi></math></span><span></span>, the frequency keeps increasing with the eventual decrease in power when we increase the strength of the Oersted field from 10<span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>kA/m to 50<span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>kA/m. By doing so, the maximum frequency can be tuned up to 212<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>GHz for <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>θ</mi><mo>=</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span> with <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">oe</mtext></mstyle></mrow></msub></math></span><span></span> as 50<span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>kA/m. The high frequency emitted by the device acts as a linchpin ingredient, as well as a launch pad element in much of scientific and technological point of view. It paves way for a new route in the areas such as high capacity, high precision, high density as well as the sensing applications.</p>\",\"PeriodicalId\":54319,\"journal\":{\"name\":\"Spin\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010324724500012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2010324724500012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过求解支配性 Landau-Lifshitz-Gilbert-Slonczewski (LLGS) 方程,我们对自旋阀器件(即三层器件,通常称为自旋力矩纳米振荡器 (STNO))中由自旋传递力矩 (STT) 引起的电流诱导磁化前驱动力学进行了数值研究。在这项研究中,我们设计了一种由 EuO 基铁磁合金在自由和固定磁层中制成的 STNO 器件。铜作为非磁性间隔物。在这里,我们引入了电流诱导的奥斯特磁场(CIOF),它是自旋极化电流通过 STNO 器件时产生的。在该器件中,我们将自由层角度 θ 从 30∘调至 90∘,增量为 30∘。对于从 30∘ 到 90∘ 的每一个 θ,都可以通过增加 STNO 器件的直径来改变所产生的奥斯特磁场强度。器件的频率和功率完全取决于材料的饱和磁化,而饱和磁化本质上反映了自旋极化直流的电流密度和相干性。从结果可以看出,对于特定的 θ,当我们将奥斯特磁场强度从 10kA/m 增加到 50kA/m 时,频率会不断增加,而功率最终会下降。这样,当θ=90∘,Hoe 为 50kA/m 时,最高频率可调至 212GHz。从科学和技术角度来看,该装置发出的高频是一个关键要素,也是一个发射台元素。它为高容量、高精度、高密度以及传感应用等领域开辟了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunability of Microwave Frequency Using Spin Torque Nano Oscillator by the Generated Oersted Field with Tunable Free Layer

The current-induced magnetization precession dynamics provoked by the spin transfer torque (STT) in a spin valve device i.e. tri-layer device (commonly spin torque nano oscillator (STNO)) is investigated numerically by solving the governing Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. In this study, we have devised an STNO device made of EuO-based ferromagnetic alloy in free and fixed magnetic layers. The copper acts as a nonmagnetic spacer. Here, we have introduced the current induced Oesterd field (CIOF), which is generated when a spin-polarized current passes through the STNO device. In the device, we have tuned the free layer angle θ from 30 to 90 as an increment of 30. For every individual θ ranging from 30 to 90, the generated Oersted field’s strength can be altered by increasing the STNO device’s diameter. Henceforth, it is apparent that the frequency tunability is achieved in the device for all the values of θ. The frequency and power of the device depend entirely on the material’s saturation magnetization, which inherently reflects the current density and coherence of spin-polarized DC. From the results, it is apparent that for a particular θ, the frequency keeps increasing with the eventual decrease in power when we increase the strength of the Oersted field from 10kA/m to 50kA/m. By doing so, the maximum frequency can be tuned up to 212GHz for θ=90 with Hoe as 50kA/m. The high frequency emitted by the device acts as a linchpin ingredient, as well as a launch pad element in much of scientific and technological point of view. It paves way for a new route in the areas such as high capacity, high precision, high density as well as the sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spin
Spin Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍: Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field. The scope of the journal includes (but is not necessarily limited to) the following topics: *Materials: -Metals -Heusler compounds -Complex oxides: antiferromagnetic, ferromagnetic -Dilute magnetic semiconductors -Dilute magnetic oxides -High performance and emerging magnetic materials *Semiconductor electronics *Nanodevices: -Fabrication -Characterization *Spin injection *Spin transport *Spin transfer torque *Spin torque oscillators *Electrical control of magnetic properties *Organic spintronics *Optical phenomena and optoelectronic spin manipulation *Applications and devices: -Novel memories and logic devices -Lab-on-a-chip -Others *Fundamental and interdisciplinary studies: -Spin in low dimensional system -Spin in medical sciences -Spin in other fields -Computational materials discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信