{"title":"与 CMOS 兼容的带流体连接的空心纳米针头","authors":"Noah Brechmann;Marvin Michel;Leon Doman;Andreas Albert;Karsten Seidl","doi":"10.1109/JMEMS.2024.3376991","DOIUrl":null,"url":null,"abstract":"Nanoneedles are used for a variety of different biomedical applications such as intracellular injection/extraction and electrical recording. Combining these two capabilities in one device, however, remains challenging. We propose a novel method for fabricating fluidically connected arrays of hollow nanoneedles and characterize the resulting devices regarding their fluidic and electrochemical functionalities. The fabrication process relies solely on complementary metal-oxide-semiconductor (CMOS) compatible and scalable microsystems technology methods. Fluorescence microscopy is used to prove the successful transport of molecules through the passive nanoneedle chips. Electrochemical measurements of ion flows through these devices further confirm both the fluidic contact and the validity of an analytical model used to estimate the electrical resistance of the chips. In total, the presented work paves the way for monolithic integration of fluidic and electrical functionalities for intracellular contacting in a single device. This, in turn, can enable controlled, continuous drug delivery with simultaneous electrical recording on a highly scalable platform. [2023-0171]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"342-349"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477994","citationCount":"0","resultStr":"{\"title\":\"CMOS-Compatible Hollow Nanoneedles With Fluidic Connection\",\"authors\":\"Noah Brechmann;Marvin Michel;Leon Doman;Andreas Albert;Karsten Seidl\",\"doi\":\"10.1109/JMEMS.2024.3376991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoneedles are used for a variety of different biomedical applications such as intracellular injection/extraction and electrical recording. Combining these two capabilities in one device, however, remains challenging. We propose a novel method for fabricating fluidically connected arrays of hollow nanoneedles and characterize the resulting devices regarding their fluidic and electrochemical functionalities. The fabrication process relies solely on complementary metal-oxide-semiconductor (CMOS) compatible and scalable microsystems technology methods. Fluorescence microscopy is used to prove the successful transport of molecules through the passive nanoneedle chips. Electrochemical measurements of ion flows through these devices further confirm both the fluidic contact and the validity of an analytical model used to estimate the electrical resistance of the chips. In total, the presented work paves the way for monolithic integration of fluidic and electrical functionalities for intracellular contacting in a single device. This, in turn, can enable controlled, continuous drug delivery with simultaneous electrical recording on a highly scalable platform. [2023-0171]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 3\",\"pages\":\"342-349\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477994\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10477994/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10477994/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CMOS-Compatible Hollow Nanoneedles With Fluidic Connection
Nanoneedles are used for a variety of different biomedical applications such as intracellular injection/extraction and electrical recording. Combining these two capabilities in one device, however, remains challenging. We propose a novel method for fabricating fluidically connected arrays of hollow nanoneedles and characterize the resulting devices regarding their fluidic and electrochemical functionalities. The fabrication process relies solely on complementary metal-oxide-semiconductor (CMOS) compatible and scalable microsystems technology methods. Fluorescence microscopy is used to prove the successful transport of molecules through the passive nanoneedle chips. Electrochemical measurements of ion flows through these devices further confirm both the fluidic contact and the validity of an analytical model used to estimate the electrical resistance of the chips. In total, the presented work paves the way for monolithic integration of fluidic and electrical functionalities for intracellular contacting in a single device. This, in turn, can enable controlled, continuous drug delivery with simultaneous electrical recording on a highly scalable platform. [2023-0171]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.