Xueyuan Pan , Jingcheng Xu , Yali Wang , Mingzhe Ma , Haiquan Liao , Hao Sun , Mengmeng Fan , Kui Wang , Kang Sun , Jianchun Jiang
{"title":"异相催化剂将二氧化碳加氢转化为甲醇的新视角","authors":"Xueyuan Pan , Jingcheng Xu , Yali Wang , Mingzhe Ma , Haiquan Liao , Hao Sun , Mengmeng Fan , Kui Wang , Kang Sun , Jianchun Jiang","doi":"10.1016/j.pnsc.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of carbon dioxide is critical to realize the objective of \"carbon peak and neutrality\". Among various carbon dioxide exploitation approaches, catalytic hydrogenation of carbon dioxide is a significant method to selectively convert the CO<sub>2</sub> into methanol and other valuable chemicals. Among these products, methanol is a crucial chemical feedstock that can be utilized as a platform molecule for the synthesis of chemicals and fuels as well as a fuel for internal combustion engines and fuel cells, causing particular interest. Nowadays, Catalytic hydrogenation of carbon dioxide into methanol has shifted its focus on the creation of low-cost, environmentally friendly, and efficient catalysts. Inspired of this, we have concluded the mechanism of catalytic hydrogenation of carbon dioxide, and reviewed the research progress of multiple heterogeneous catalysts with high catalytic application prospect, especially the supported catalysts.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 3","pages":"Pages 482-494"},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new perspective on hydrogenation of CO2 into methanol over heterogeneous catalysts\",\"authors\":\"Xueyuan Pan , Jingcheng Xu , Yali Wang , Mingzhe Ma , Haiquan Liao , Hao Sun , Mengmeng Fan , Kui Wang , Kang Sun , Jianchun Jiang\",\"doi\":\"10.1016/j.pnsc.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of carbon dioxide is critical to realize the objective of \\\"carbon peak and neutrality\\\". Among various carbon dioxide exploitation approaches, catalytic hydrogenation of carbon dioxide is a significant method to selectively convert the CO<sub>2</sub> into methanol and other valuable chemicals. Among these products, methanol is a crucial chemical feedstock that can be utilized as a platform molecule for the synthesis of chemicals and fuels as well as a fuel for internal combustion engines and fuel cells, causing particular interest. Nowadays, Catalytic hydrogenation of carbon dioxide into methanol has shifted its focus on the creation of low-cost, environmentally friendly, and efficient catalysts. Inspired of this, we have concluded the mechanism of catalytic hydrogenation of carbon dioxide, and reviewed the research progress of multiple heterogeneous catalysts with high catalytic application prospect, especially the supported catalysts.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 3\",\"pages\":\"Pages 482-494\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124000650\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000650","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A new perspective on hydrogenation of CO2 into methanol over heterogeneous catalysts
The utilization of carbon dioxide is critical to realize the objective of "carbon peak and neutrality". Among various carbon dioxide exploitation approaches, catalytic hydrogenation of carbon dioxide is a significant method to selectively convert the CO2 into methanol and other valuable chemicals. Among these products, methanol is a crucial chemical feedstock that can be utilized as a platform molecule for the synthesis of chemicals and fuels as well as a fuel for internal combustion engines and fuel cells, causing particular interest. Nowadays, Catalytic hydrogenation of carbon dioxide into methanol has shifted its focus on the creation of low-cost, environmentally friendly, and efficient catalysts. Inspired of this, we have concluded the mechanism of catalytic hydrogenation of carbon dioxide, and reviewed the research progress of multiple heterogeneous catalysts with high catalytic application prospect, especially the supported catalysts.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.