{"title":"通过不同尺度的多视角 DIC 进行损伤检测和定量","authors":"I. Hamadouche, D. M. Seyedi, F. Hild","doi":"10.1007/s11340-024-01038-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>To minimize measurement uncertainties and create seamless procedures between tests and simulations for the characterization and prediction of damage in large scale structures, a system capable of monitoring the quantities of interest at different scales throughout the test is required.</p><h3>Objective</h3><p>The aim of this work is to develop a multiview DIC framework at varying scales in which kinematic fields are expressed on a <i>unique</i> mesh.</p><h3>Methods</h3><p>A three-point flexural test was performed on a concrete beam and the images acquired by three different cameras were used to perform DIC calculations.</p><h3>Results</h3><p>Displacement and strain fields were measured using mono and multiview implementations; their associated uncertainties were assessed. Damage initiation and growth within the sample was quantified based on the standard displacement uncertainty.</p><h3>Conclusion</h3><p>The reported results show that the proposed method reduced the associated displacement uncertainties. The onset and propagation of damage was successfully quantified.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 5","pages":"675 - 689"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage Detection and Quantification via Multiview DIC at Varying Scales\",\"authors\":\"I. Hamadouche, D. M. Seyedi, F. Hild\",\"doi\":\"10.1007/s11340-024-01038-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>To minimize measurement uncertainties and create seamless procedures between tests and simulations for the characterization and prediction of damage in large scale structures, a system capable of monitoring the quantities of interest at different scales throughout the test is required.</p><h3>Objective</h3><p>The aim of this work is to develop a multiview DIC framework at varying scales in which kinematic fields are expressed on a <i>unique</i> mesh.</p><h3>Methods</h3><p>A three-point flexural test was performed on a concrete beam and the images acquired by three different cameras were used to perform DIC calculations.</p><h3>Results</h3><p>Displacement and strain fields were measured using mono and multiview implementations; their associated uncertainties were assessed. Damage initiation and growth within the sample was quantified based on the standard displacement uncertainty.</p><h3>Conclusion</h3><p>The reported results show that the proposed method reduced the associated displacement uncertainties. The onset and propagation of damage was successfully quantified.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 5\",\"pages\":\"675 - 689\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01038-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01038-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Damage Detection and Quantification via Multiview DIC at Varying Scales
Background
To minimize measurement uncertainties and create seamless procedures between tests and simulations for the characterization and prediction of damage in large scale structures, a system capable of monitoring the quantities of interest at different scales throughout the test is required.
Objective
The aim of this work is to develop a multiview DIC framework at varying scales in which kinematic fields are expressed on a unique mesh.
Methods
A three-point flexural test was performed on a concrete beam and the images acquired by three different cameras were used to perform DIC calculations.
Results
Displacement and strain fields were measured using mono and multiview implementations; their associated uncertainties were assessed. Damage initiation and growth within the sample was quantified based on the standard displacement uncertainty.
Conclusion
The reported results show that the proposed method reduced the associated displacement uncertainties. The onset and propagation of damage was successfully quantified.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.