修正科特韦格-德-弗里斯方程的自相似解在膨胀时间的扰动

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Simão Correia, Raphaël Côte
{"title":"修正科特韦格-德-弗里斯方程的自相似解在膨胀时间的扰动","authors":"Simão Correia,&nbsp;Raphaël Côte","doi":"10.1007/s00205-024-01969-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a first stability result of self-similar blow-up for the modified Korteweg–de Vries equation on the line. More precisely, given a self-similar solution and a sufficiently small regular profile, there is a unique global solution which behaves at <span>\\(t=0\\)</span> as the sum of the self-similar solution and the smooth perturbation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation at Blow-Up Time of Self-Similar Solutions for the Modified Korteweg–de Vries Equation\",\"authors\":\"Simão Correia,&nbsp;Raphaël Côte\",\"doi\":\"10.1007/s00205-024-01969-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a first stability result of self-similar blow-up for the modified Korteweg–de Vries equation on the line. More precisely, given a self-similar solution and a sufficiently small regular profile, there is a unique global solution which behaves at <span>\\\\(t=0\\\\)</span> as the sum of the self-similar solution and the smooth perturbation.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01969-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01969-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了线上修正科特维格-德-弗里斯方程自相似炸毁的第一个稳定性结果。更确切地说,给定一个自相似解和一个足够小的规则轮廓,存在一个唯一的全局解,它在(t=0)时的行为是自相似解和平滑扰动之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation at Blow-Up Time of Self-Similar Solutions for the Modified Korteweg–de Vries Equation

We prove a first stability result of self-similar blow-up for the modified Korteweg–de Vries equation on the line. More precisely, given a self-similar solution and a sufficiently small regular profile, there is a unique global solution which behaves at \(t=0\) as the sum of the self-similar solution and the smooth perturbation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信