S. Siddharth, Shalvi Singh, Syed Mustafa Kazim, Pritam Chakraborty
{"title":"多晶微结构中微裂纹扩展的耦合晶体塑性和损伤模型","authors":"S. Siddharth, Shalvi Singh, Syed Mustafa Kazim, Pritam Chakraborty","doi":"10.1007/s10704-024-00772-9","DOIUrl":null,"url":null,"abstract":"<div><p>Micro-crack propagation in polycrystalline materials can strongly depend on the defect size and its ratio to specimen size, and local variation in the microstructural features such as grain orientation, size, etc. While the dependencies are understood heuristically, the use of mechanistic models to capture the effect of various factors influencing micro-crack propagation can enable accurate prediction of fracture properties of polycrystalline materials and their engineering. To this end, a crystal plasticity coupled to damage model for micro-crack propagation on cleavage planes has been developed in this work and is shown to successfully capture the grain orientation dependent growth. In order to identify a suitable integration scheme for the coupled model, a one-dimensional model is developed and a detailed comparative analysis of three different schemes is performed. The analysis shows that the coupled explicit–implicit scheme is the most suitable and is a key finding of this work. Subsequently, a two-scale multi-scale method has been developed to include the interaction between the defect, its surrounding microstructure and the specimen. The two-scale method along with the coupled crystal plasticity-damage model has been applied to perform finite element method based micro-crack growth simulations for a microstructurally short and physically long crack with two different microstructures with random orientation and texture. Such a study comparing microstructural effects on crack growth from pre-existing defects of drastically disparate sizes hasn’t been performed before and is a novelty of this work. The analyses clearly show that though the micro-crack path from long crack is different depending on the orientation distribution, the rates are nearly independent of the local behavior. Moreover, the micro-crack propagation rate from long crack is significantly larger at the initial stages, with the latter showing significant acceleration after a small growth. Overall, the influence of microstructure on the crack growth behavior is stronger for short cracks, which conform with experimental observations and is successfully captured by the proposed model.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"183 - 201"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled crystal plasticity and damage model for micro crack propagation in polycrystalline microstructures\",\"authors\":\"S. Siddharth, Shalvi Singh, Syed Mustafa Kazim, Pritam Chakraborty\",\"doi\":\"10.1007/s10704-024-00772-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Micro-crack propagation in polycrystalline materials can strongly depend on the defect size and its ratio to specimen size, and local variation in the microstructural features such as grain orientation, size, etc. While the dependencies are understood heuristically, the use of mechanistic models to capture the effect of various factors influencing micro-crack propagation can enable accurate prediction of fracture properties of polycrystalline materials and their engineering. To this end, a crystal plasticity coupled to damage model for micro-crack propagation on cleavage planes has been developed in this work and is shown to successfully capture the grain orientation dependent growth. In order to identify a suitable integration scheme for the coupled model, a one-dimensional model is developed and a detailed comparative analysis of three different schemes is performed. The analysis shows that the coupled explicit–implicit scheme is the most suitable and is a key finding of this work. Subsequently, a two-scale multi-scale method has been developed to include the interaction between the defect, its surrounding microstructure and the specimen. The two-scale method along with the coupled crystal plasticity-damage model has been applied to perform finite element method based micro-crack growth simulations for a microstructurally short and physically long crack with two different microstructures with random orientation and texture. Such a study comparing microstructural effects on crack growth from pre-existing defects of drastically disparate sizes hasn’t been performed before and is a novelty of this work. The analyses clearly show that though the micro-crack path from long crack is different depending on the orientation distribution, the rates are nearly independent of the local behavior. Moreover, the micro-crack propagation rate from long crack is significantly larger at the initial stages, with the latter showing significant acceleration after a small growth. Overall, the influence of microstructure on the crack growth behavior is stronger for short cracks, which conform with experimental observations and is successfully captured by the proposed model.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"247 2\",\"pages\":\"183 - 201\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-024-00772-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00772-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Coupled crystal plasticity and damage model for micro crack propagation in polycrystalline microstructures
Micro-crack propagation in polycrystalline materials can strongly depend on the defect size and its ratio to specimen size, and local variation in the microstructural features such as grain orientation, size, etc. While the dependencies are understood heuristically, the use of mechanistic models to capture the effect of various factors influencing micro-crack propagation can enable accurate prediction of fracture properties of polycrystalline materials and their engineering. To this end, a crystal plasticity coupled to damage model for micro-crack propagation on cleavage planes has been developed in this work and is shown to successfully capture the grain orientation dependent growth. In order to identify a suitable integration scheme for the coupled model, a one-dimensional model is developed and a detailed comparative analysis of three different schemes is performed. The analysis shows that the coupled explicit–implicit scheme is the most suitable and is a key finding of this work. Subsequently, a two-scale multi-scale method has been developed to include the interaction between the defect, its surrounding microstructure and the specimen. The two-scale method along with the coupled crystal plasticity-damage model has been applied to perform finite element method based micro-crack growth simulations for a microstructurally short and physically long crack with two different microstructures with random orientation and texture. Such a study comparing microstructural effects on crack growth from pre-existing defects of drastically disparate sizes hasn’t been performed before and is a novelty of this work. The analyses clearly show that though the micro-crack path from long crack is different depending on the orientation distribution, the rates are nearly independent of the local behavior. Moreover, the micro-crack propagation rate from long crack is significantly larger at the initial stages, with the latter showing significant acceleration after a small growth. Overall, the influence of microstructure on the crack growth behavior is stronger for short cracks, which conform with experimental observations and is successfully captured by the proposed model.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.